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Aggregation

• Aggregation, or combination of
observations, is not only the oldest
but also the most radical pillar of
statistical wisdom

• Gain information beyond
individual data values

• Statistical summary is often
sufficient
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Early History of Aggregation

Sumerian tablet (ca. 3000 BCE) and modern contingency table
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Modern Aggregation

Centralized, distributed, and federated learning
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Heterogeneous Federated Learning

• Data heterogeneity; personalized models
are desired

• Decentralized computation

• Communication
heterogeneity
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Challenges to Statistics: Heterogeneity of Individuals

• Why aggregation works: borrow strength from
similar individuals

• Uniqueness of “me” renders n = 0: no genuine
guinea pig for me (Li and Meng, 2021)

• Challenge to aggregation: individuals are
intrinsically heterogeneous

5/22



Heterogeneity of Individuals

• IID data: the more data aggregated, the more information gained

• Non-IID data: heterogeneity may counteract the sample size increase

• An illustrative example

y
(k)
i = µk + ε

(k)
i , i = 1, . . . , nk,

where µk = 0.02k, k = 0, . . . , 100, ε(k)i ∼ N(0, 1), and nk = 50
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Trade-off Between Aggregation and Heterogeneity
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Problem Setup

• Consider the general M -estimation problem

θ∗u = argmin
θ

Eℓu(z;θ), u ∈ V

• This includes
⋄ Mean estimation: z(u)i = θ∗

u + ε
(u)
i

⋄ Linear regression: y
(u)
i = (θ∗

u)
T x(u)

i + ε
(k)
i

⋄ Logistic regression: P (Y
(u)
i = 1 | x(u)

i ) = 1/{1 + exp(−(θ∗
u)

T x(u)
i )}

• Characteristic graph G0 = (V,E0): (u, v) ∈ E0 iff θ∗u = θ∗v
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Problem Setup

• Characteristic graph explains heterogeneity, but generally unknown
• Communication graph G = (V,E) given a priori as a surrogate for G0

⋄ If G0 is completely unknown, Zhao et al. (2023) proved the minimax estimation
error scales with the same order as the local estimator (e.g. O(n−1))

G0 G
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Methodology

• Consider the network fusion penalized M -estimator

Θ̂ = argmin
θu

1

|V |
∑
u∈V

1

nu

nu∑
i=1

ℓu(z(u)i ;θu)︸ ︷︷ ︸
Empirical risk

+λ
∑

(u,v)∈E

ϕ(θu − θv)︸ ︷︷ ︸
Regularization

,

where ϕ(·) is a norm-based penalty on Rp such as the group Lasso
ϕ(·) = ∥ · ∥1

• Want to exploit prior information of G about G0
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Assumptions

• Identifiability. ℓ(·) is convex and twice differentiable, the Hessian matrix
Hu(·) is Lipschitz continuous at θ∗u

• Sub-Gaussianity. The score function ψu(z(u)i ;θ∗u) is sub-Gaussian with
parameter σ2

• Bounded conditional number. The conditional number of Ĥu(θ) is bounded
by κ, or its population counterpart

• Compatibility factor. For S = E \ E0 ̸= ∅,

κS(D) ≡ inf
Θ

√
|S|∥Θ∥F

R{(DΘ)S}
≥ κ0 > 0,

where R{(DΘ)S} =
∑

(u,v)∈S ϕ(θu − θv)
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Statistical Guarantees

• Deterministic result. Under appropriate conditions, the penalized
M -estimator Θ̂ satisfies

1

|V |
∥Θ̂−Θ∗∥2F ≤ 2κ2

(
ρ2 +

4|S|
κ0

λ2

)
,

where

ρ =
1√
|V |

∥ΠKer(D)Ψ̂(Θ∗)∥F ,

λ =
1√
|V |

R∗{(D+)T Ψ̂(Θ∗)}

⋄ S = E \ E0 measures the bias introduced by aggregating ‘wrong’ devices
⋄ Ψ̂: gradient of the empirical risk function
⋄ R∗(·): Fréchet dual of R(·)
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Implications

• Assuming sub-Gaussian noises, our rate:
1

|V |
∥Θ̂−Θ∗∥2F = Op

{
σ2

κ0

(
pK(G)

n|V |
+

p|E \ E0|
n|V |

)}
where K(G) is the number of connected components of G

• The oracle rate:
1

|V |
∥Θ̂

oracle
−Θ∗∥2F = Op

{
σ2 pK(G0)

n|V |

}
• Impact of G depends on the graph fidelity

GFG0
(G) ≡ K(G0)

K(G) + |E \ E0|
≤ 1

⋄ GFG0(G) ̸→ 0, in which case Θ̂ achieves the oracle rate
⋄ Aggregation–Heterogeneity trade-off: K(G) and |E \ E0| cannot be

simultaneously small
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Edge Selection

• To adapt to the unknown structure of G0, we propose to test

H0e : θ
∗
u = θ∗v vs. H1e : θ

∗
u ̸= θ∗v , e = (u, v) ∈ E0

• Construct the Wald test statistic

Ŵ = (θ̂loc
u − θ̂loc

v )T (Σ̂u + Σ̂v)
−1(θ̂loc

u − θ̂loc
v )

and select the edge set

Ê = {e ∈ E0 : Ŵ ≤ χ2
p(α/|E0|)}

• Theorem. Under appropriate conditions,

lim inf
n→∞

P (Ê = E ∩ E0) ≥ 1− α
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FedADMM

• The augmented Lagrangian

L(Θ,B,A) =
1

|V |
∑
u∈V

M̂u(θu) + λ
∑

(u,v)∈E

ϕ(βuv − βvu)

−
∑

(u,v)∈E

{αT
uv(θu − βuv) +α

T
vu(θv − βvu)}

+
ρ

2

∑
(u,v)∈E

(∥θu − βuv∥22 + ∥θv − βvu∥22)
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FedADMM

1. Sample minibatches Bu(t) on device u

2. Node optimization step. Update θu on device u in the form of SGD

3. Broadcast θu to neighboring devices
4. Edge communication step. On either device u or v such that (u, v) ∈ E,

⋄ Update βuv and βvu

⋄ Update αuv and αvu

5. Broadcast (βuv,βvu) and (αuv,αvu) to neighboring devices
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FedADMM

• Convergence. Under appropriate conditions,
1

|V |
E∥ΘT − Θ̂∥2F = O(T−1 logT )

• Extension to communication heterogeneity by inverse probability weighting

ĝu =
1

|Bi(t)|
∑

i∈Bu(t)

Ru(t)

πu
ψu(z(u)i ;θu)

• Convergence rate O((πminT )
−1 logT )
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Simulation Studies
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Simulation Studies
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Real Data Example

• 2020 U.S. presidential election data: 29 states with > 50 counties

• Prediction by logistic regression with 52 county-level predictors

• Two thirds of the counties for training and the rest for testing

Method Local Global FedADMM-ES FedADMM-Hist
Accuracy 0.741 (0.034) 0.752 (0.012) 0.793 (0.019) 0.742 (0.011)
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Discussion

• Take-home message
⋄ Aggregation–heterogeneity trade-off is fundamental to federated learning
⋄ Simply pooling all data may not be optimal, and selective aggregation can be

effective
⋄ Network topology plays a key role

• Future work
⋄ Aggregation–heterogeneity trade-off in multi-central distributed learning
⋄ Edge selection with error control
⋄ High-dimensional M -estimation
⋄ Beyond M -estimation, e.g., deep learning
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• Wang, H., Zhao, X., and Lin, W. (2022). Heterogeneous federated learning on a graph.
arXiv:2209.08737

Welcome discussion!
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