Heterogeneous Federated Learning on a Graph

王惠远

第十二届全国概率统计会议

April 20, 2023

Aggregation

- Aggregation, or combination of observations, is not only the oldest but also the most radical pillar of statistical wisdom
- Gain information beyond individual data values
- Statistical summary is often sufficient

The Seven Pillars of Statistical Wisdom

STEPHEN M. STIGLER

Early History of Aggregation

Sumerian tablet (ca. 3000 BCE) and modern contingency table

Modern Aggregation

Centralized, distributed, and federated learning

Heterogeneous Federated Learning

- Data heterogeneity; *personalized models* are desired
- Decentralized computation
- Communication heterogeneity

Challenges to Statistics: Heterogeneity of Individuals

- Why aggregation works: borrow strength from *similar* individuals
- Uniqueness of "me" renders n = 0: no genuine guinea pig for me (Li and Meng, 2021)
- Challenge to aggregation: individuals are intrinsically *heterogeneous*

Heterogeneity of Individuals

- IID data: the more data aggregated, the more information gained
- Non-IID data: heterogeneity may counteract the sample size increase
- An illustrative example

$$y_i^{(k)} = \mu_k + \varepsilon_i^{(k)}, \quad i = 1, \dots, n_k,$$

where $\mu_k = 0.02k, \ k = 0, \dots, 100, \ \varepsilon_i^{(k)} \sim N(0, 1)$, and $n_k = 50$

Trade-off Between Aggregation and Heterogeneity

the number of aggregated individuals m

Performance of *global* and *local* estimators vs. the *optimally* aggregated estimator for k = 0

Problem Setup

• Consider the general M-estimation problem

$$\label{eq:theta_u} \begin{split} \pmb{\theta}_u^* &= \mathop{\mathrm{argmin}}_{\pmb{\theta}} E\ell_u(\mathbf{z}; \pmb{\theta}), \qquad u \in V \\ & \boldsymbol{\theta} \end{split}$$

- This includes
 - \diamond Mean estimation: $\mathbf{z}_i^{(u)} = \boldsymbol{ heta}_u^* + \boldsymbol{arepsilon}_i^{(u)}$
 - $\diamond~$ Linear regression: $y_i^{(u)} = (\pmb{\theta}_u^*)^T \mathbf{x}_i^{(u)} + \varepsilon_i^{(k)}$
 - $\diamond \text{ Logistic regression: } P(Y_i^{(u)} = 1 \mid \mathbf{x}_i^{(u)}) = 1/\{1 + \exp(-(\boldsymbol{\theta}_u^*)^T \mathbf{x}_i^{(u)})\}$
- Characteristic graph $G_0 = (V, E_0)$: $(u, v) \in E_0$ iff $\boldsymbol{\theta}_u^* = \boldsymbol{\theta}_v^*$

Problem Setup

- Characteristic graph explains heterogeneity, but generally unknown
- Communication graph G = (V, E) given a priori as a surrogate for G_0
 - ♦ If G_0 is completely unknown, Zhao et al. (2023) proved the minimax estimation error scales with the same order as the local estimator (e.g. $O(n^{-1})$)

Methodology

• Consider the *network fusion* penalized *M*-estimator

$$\begin{split} \widehat{\boldsymbol{\Theta}} &= \underset{\boldsymbol{\theta}_{u}}{\operatorname{argmin}} \underbrace{\frac{1}{|V|} \sum_{u \in V} \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \ell_{u}(\mathbf{z}_{i}^{(u)}; \boldsymbol{\theta}_{u})}_{\textit{Empirical risk}} + \underbrace{\lambda \sum_{(u,v) \in E} \phi(\boldsymbol{\theta}_{u} - \boldsymbol{\theta}_{v})}_{\textit{Regularization}}, \end{split} \\ \text{where } \phi(\cdot) \text{ is a norm-based penalty on } \mathbb{R}^{p} \text{ such as the group Lasso} \\ \phi(\cdot) &= \| \cdot \|_{1} \end{split}$$

• Want to exploit prior information of G about G_0

Assumptions

- *Identifiability.* $\ell(\cdot)$ is convex and twice differentiable, the Hessian matrix $\mathbf{H}_u(\cdot)$ is Lipschitz continuous at θ_u^*
- Sub-Gaussianity. The score function $\psi_u(\mathbf{z}_i^{(u)}; \boldsymbol{\theta}_u^*)$ is sub-Gaussian with parameter σ^2
- Bounded conditional number. The conditional number of H
 _u(θ) is bounded by κ, or its population counterpart
- Compatibility factor. For $S = E \setminus E_0 \neq \emptyset$,

$$\kappa_{S}(\mathbf{D}) \equiv \inf_{\Theta} \frac{\sqrt{|S|} \|\Theta\|_{F}}{R\{(\mathbf{D}\Theta)_{S}\}} \geq \kappa_{0} > 0,$$
 where $R\{(\mathbf{D}\Theta)_{S}\} = \sum_{(u,v)\in S} \phi(\theta_{u} - \theta_{v})$

Statistical Guarantees

• Deterministic result. Under appropriate conditions, the penalized M-estimator $\widehat{\Theta}$ satisfies

$$\frac{1}{|V|} \|\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}^*\|_F^2 \le 2\kappa^2 \left(\rho^2 + \frac{4|S|}{\kappa_0}\lambda^2\right),$$

where

$$\begin{split} \rho &= \frac{1}{\sqrt{|V|}} \| \Pi_{\mathsf{Ker}(\mathbf{D})} \widehat{\Psi}(\mathbf{\Theta}^*) \|_F, \\ \lambda &= \frac{1}{\sqrt{|V|}} R^* \{ (\mathbf{D}^+)^T \widehat{\Psi}(\mathbf{\Theta}^*) \} \end{split}$$

♦ $S = E \setminus E_0$ measures the bias introduced by aggregating 'wrong' devices ♦ $\widehat{\Psi}$: gradient of the empirical risk function ♦ $R^*(\cdot)$: Fréchet dual of $R(\cdot)$

Implications

• Assuming sub-Gaussian noises, our rate:

$$\frac{1}{|V|} \|\widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}^*\|_F^2 = O_p \left\{ \frac{\sigma^2}{\kappa_0} \left(\frac{pK(G)}{n|V|} + \frac{p|E \setminus E_0|}{n|V|} \right) \right\}$$

where K(G) is the number of connected components of G

• The oracle rate:

$$\frac{1}{|V|} \|\widehat{\boldsymbol{\Theta}}^{\mathsf{oracle}} - \boldsymbol{\Theta}^*\|_F^2 = O_p \bigg\{ \sigma^2 \frac{pK(G_0)}{n|V|} \bigg\}$$

• Impact of G depends on the graph fidelity

$$\mathsf{GF}_{G_0}(G) \equiv \frac{K(G_0)}{K(G) + |E \setminus E_0|} \le 1$$

- $\diamond \ \mathsf{GF}_{G_0}(G) \not
 ightarrow 0$, in which case $\widehat{\mathbf{\Theta}}$ achieves the *oracle* rate
- ♦ Aggregation–Heterogeneity trade-off: K(G) and $|E \setminus E_0|$ cannot be simultaneously small

Edge Selection

• To adapt to the *unknown* structure of G_0 , we propose to test

$$H_{0e}: \boldsymbol{\theta}_u^* = \boldsymbol{\theta}_v^* \quad \text{vs.} \quad H_{1e}: \boldsymbol{\theta}_u^* \neq \boldsymbol{\theta}_v^*, \quad e = (u, v) \in E_0$$

• Construct the Wald test statistic

$$\widehat{W} = (\widehat{\theta}_u^{\mathrm{loc}} - \widehat{\theta}_v^{\mathrm{loc}})^T (\widehat{\Sigma}_u + \widehat{\Sigma}_v)^{-1} (\widehat{\theta}_u^{\mathrm{loc}} - \widehat{\theta}_v^{\mathrm{loc}})$$

and select the edge set

$$\widehat{E} = \{ e \in E_0 : \widehat{W} \le \chi_p^2(\alpha/|E_0|) \}$$

• Theorem. Under appropriate conditions,

$$\liminf_{n \to \infty} P(\widehat{E} = E \cap E_0) \ge 1 - \alpha$$

FedADMM

• The augmented Lagrangian

$$L(\boldsymbol{\Theta}, \mathbf{B}, \mathbf{A}) = \frac{1}{|V|} \sum_{u \in V} \widehat{M}_u(\boldsymbol{\theta}_u) + \lambda \sum_{(u,v) \in E} \phi(\boldsymbol{\beta}_{uv} - \boldsymbol{\beta}_{vu}) - \sum_{(u,v) \in E} \{ \boldsymbol{\alpha}_{uv}^T(\boldsymbol{\theta}_u - \boldsymbol{\beta}_{uv}) + \boldsymbol{\alpha}_{vu}^T(\boldsymbol{\theta}_v - \boldsymbol{\beta}_{vu}) \} + \frac{\rho}{2} \sum_{(u,v) \in E} (\|\boldsymbol{\theta}_u - \boldsymbol{\beta}_{uv}\|_2^2 + \|\boldsymbol{\theta}_v - \boldsymbol{\beta}_{vu}\|_2^2)$$

FedADMM

- 1. Sample minibatches $B_u(t)$ on device u
- 2. Node optimization step. Update θ_u on device u in the form of SGD
- 3. Broadcast θ_u to neighboring devices
- 4. Edge communication step. On either device u or v such that $(u, v) \in E$,
 - \diamond Update $oldsymbol{eta}_{uv}$ and $oldsymbol{eta}_{vu}$
 - \diamond Update $lpha_{uv}$ and $lpha_{vu}$
- 5. Broadcast $(m{eta}_{uv},m{eta}_{vu})$ and $(m{lpha}_{uv},m{lpha}_{vu})$ to neighboring devices

FedADMM

• Convergence. Under appropriate conditions,

$$\frac{1}{|V|} E \| \boldsymbol{\Theta}_T - \widehat{\boldsymbol{\Theta}} \|_F^2 = O(T^{-1} \log T)$$

• Extension to communication heterogeneity by inverse probability weighting

$$\widehat{\mathbf{g}}_u = \frac{1}{|B_i(t)|} \sum_{i \in B_u(t)} \frac{R_u(t)}{\pi_u} \psi_u(\mathbf{z}_i^{(u)}; \boldsymbol{\theta}_u)$$

- Convergence rate $O((\pi_{\min}T)^{-1}\log T)$

Simulation Studies

Performance as the network grows

Simulation Studies

Sensitivity to graph corruption

- 2020 U.S. presidential election data: 29 states with > 50 counties
- Prediction by logistic regression with 52 county-level predictors
- Two thirds of the counties for training and the rest for testing

Method	Local	Global	FedADMM-ES	FedADMM-Hist
Accuracy	0.741 (0.034)	0.752 (0.012)	0.793 (0.019)	0.742 (0.011)

Discussion

- Take-home message
 - ♦ Aggregation-heterogeneity trade-off is fundamental to federated learning
 - Simply pooling all data may not be optimal, and selective aggregation can be effective
 - ◊ Network topology plays a key role
- Future work
 - Aggregation-heterogeneity trade-off in multi-central distributed learning
 - Edge selection with error control
 - $\diamond~$ High-dimensional M-estimation
 - ♦ Beyond *M*-estimation, e.g., deep learning

• Wang, H., Zhao, X., and Lin, W. (2022). *Heterogeneous federated learning on a graph*. arXiv:2209.08737

Welcome discussion!