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Background

ä One common use of EHR data is identification of novel risk factors for diseases

u Y : binary phenotype of interest

u X = (X1, . . . ,Xp)
T : the vector of p risk factors

u The statistical association between X andY is modeled by

P(Y = 1 | X) = Expit(X1β ⋆
1 + · · ·+Xpβ ⋆

p )

ä Identification of risk factors is equivalent to testing

H0, j : β ⋆
j = 0 versus H1, j : β ⋆

j ̸= 0, for j = 1, . . . , p
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Data Structure

ä Data: {(Xi,Si)}i∈F\V ∪{(Xi,Si,Yi)}i∈V , where F denotes the full cohort andV the
validation (chart‐reviewed) set

ä V is selected via random sampling (c.f. Missing Completely at Random)
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Challenges

ä Small validated set: The true phenotypeY is severely missing

u LabelingY relies onmanual chart review, which is expensive often prohibitively

#chart‐reviewed samples
#total samples

≈ 0

u Using only chart‐reviewed samples for testing is often inefficient

ä High‐dimensionality:

#total samples︸ ︷︷ ︸
N

≫ p ≫ #chart‐reviewed samples︸ ︷︷ ︸
n
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Challenges

ä Misclassified surrogates: S, a surrogate ofY , can be obtained for all samples from
computational phenotyping algorithms

u S is typically inaccurate; 28%–60% of patients are misclassified (Carroll et al. 2012)

u Ignoring the misclassification and treating surrogates as true labels will lead to substantial
biased estimates and inflated Type I errors (Duan et al. 2016)

Robert J. Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. Journal of the American Medical Informatics Association,
19(e1):e162–e169, 2012.

Rui Duan et al. An empirical study for impacts of measurement errors on EHR based association studies. In AMIA Annual Symposium Proceedings, page 1764, 2016.
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Score Test

ä For a given j, consider

H0, j : β ⋆
j = 0 versus H1, j : β ⋆

j ̸= 0

u Let ϕ j(β j;β \ j,Y,X) be any score function of β ⋆
j , where β \ j = (βi, i ̸= j)T

u By properties of score function, at the truth β j = β ⋆
j and β \ j = β ⋆

\ j

1√
n ∑

i∈V
ϕ j(β ⋆

j ;β ⋆
\ j,Yi,Xi)→d N(0,Var(ϕ j))

u Replacing β ⋆
\ j and Var(ϕ j) with sufficiently “good” estimators β̂ \ j and V̂ar(ϕ j), respectively,

we can construct the score‐based test statistic for the null

T (α)
n (ϕ j) =

 1,
∣∣∣∑i∈V ϕ j(0; β̂ \ j,Yi,Xi)

∣∣∣≥√
nV̂ar(ϕ j)z1−α/2

0, otherwise

u Smaller Var(ϕ j) gives rise to more powerful T (α)
n (ϕ j)
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Decorrelated Score Test

ä Viewing β ⋆
j as the target parameter, its score function is

ϕ j(β ⋆
j ;β ⋆

\ j,X,Y ) =
∂ log{P(Y = 1 | X)YP(Y = 0 | X)1−Y}

∂β j

= {Y − Expit(XT β ⋆)}X j

ä The score function for the nuisance parameter β \ j = (βi, i ̸= j)T is

ϕ\ j(β
⋆
\ j;β ⋆

j ,X,Y ) = {Y − Expit(XT β ⋆)}X\ j

ä The efficient score function for β ⋆
j (Tsiatis 2006, Ning and Liu 2017) is

ϕ val‐eff
j (β ⋆

j ;β ⋆
\ j,w

⋆,X,Y ) = ϕ j(β ⋆
j ;β ⋆

\ j,X,Y )−w⋆T ϕ\ j(β
⋆
\ j;β ⋆

j ,X,Y ),
where w⋆ is chosen such that ϕ val‐eff

j is not correlated with ϕ\ j

Anastasios A. Tsiatis. Semiparametric theory and missing data. Vol. 4. New York: Springer, 2006.

Yang Ning and Han Liu. A general theory of hypothesis tests and confidence regions for sparse high dimensional models. Annals of Statistics 45.1:158‐195, 2017.
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Augmented Score Test for Variance Reduction

ä Consider any function h(S,X) with finite
second moment Var{h(S,X)}< ∞

ä E{h(S,X)} can be viewed as a nuisance
parameter with score/influence function
h(S,X)−E{h(S,X)}

ä Note that E{h(S,X)} can be estimated by the
whole sample

E{h(S,X)} ≈ 1
N ∑

i∈F
h(Si,Xi)

ä Since N ≫ n, we can view E{h(S,X)} as
known asymptotically, which can offer us
additional efficiency
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Augmented Score Test for Variance Reduction

ä Proposition. For any function h(S,X) with finite second moment Var{h(S,X)}< ∞
and any score function ϕ j, if Cov{ϕ j(Y,X),h(S,X)}̸= 0, then the augmented score
function

ϕ A
j (Y,X)

= ϕ j(Y,X)− v⋆ [h(S,X)−E{h(S,X)}]︸ ︷︷ ︸
nuisance score

has a strictly smaller variance than ϕ j, where
v⋆ = Cov{ϕ j(Y,X),h(S,X)}/Var{h(S,X)},

Var(ϕ j)−Var(ϕ A
j ) =

{Cov(ϕ j,h)}2

Var(h)

≤ Cov{E{ϕ j(Y,X) | S,X}},
and the equality holds when

h(S,X) = h⋆(S,X)≡ E{ϕ j(Y,X) | S,X}
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Choice of h

ä In practice, h⋆ is unknown
u We can fit a regression model parametrized by γ onV : E(Y | S,X) = f (S,X;γ⋆) (e.g.,

imputation)
• For the decorrelated score test,

h(S,X;β ⋆,w⋆,γ⋆) = E{ϕ val‐eff
j (β ⋆;w⋆,X,Y ) | S,X}

= { f (S,X;γ⋆)− Expit(XT β ⋆)}
(
X j −w⋆T X\ j

)
u We can specify any other function h(S,X) (imputation‐free)

• h(S,X) = (S,XT )T

• h(S,X;γ⋆) = {S− Expit(XT γ⋆)}g(X) for some weighting function g(·) ∈ Rd , where γ⋆ is the
regression coefficient (Chen and Chen 2000)

γ⋆ = argmin
γ

E
{
−SXT γ + log

(
1+ eXT γ)}

Chen, Yi‐Hau, and Hung Chen.“A unified approach to regression analysis under double‐sampling designs.” Journal of the Royal Statistical Society Series B: Statistical Methodology
62, no. 3 (2000): 449‐460.
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The Proposed Method for Hypothesis Testing

ä Step 1: Compute the decorrelated score function using validated samples (under the
null H0, j : β j = 0)

ϕ val‐eff
i j (0, β̂ \ j, ŵ j) =

{
Yi − expit

(
β̂ \ j

T Xi,\ j

)}(
Xi j − ŵ j

T Xi,\ j
)
,

where
β̂ = argmin

β

1
n ∑

i∈V

{
−YiXT

i β + log(1+ eXT
i β )+λ∥β∥1

}
is the lasso estimator of β ⋆, and

ŵ j =
[
∑
i∈F

{
µ̂i j(1− µ̂i j)Xi,\ jXT

i,\ j

}]−1[
∑
i∈F

{
µ̂i j(1− µ̂i j)Xi,\ jXi, j

}]
is the plug‐in estimator of w⋆ with µ̂i j = Expit(XT

i,\ jβ̂ \ j)
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The Proposed Method for Hypothesis Testing

ä Step 2: Construct the augmented score function:

ϕ A
i j(0, β̂ \ j, ŵ j,h, v̂ j) = ϕ val‐eff

i j (0, β̂ \ j, ŵ j)− v̂T
j h̄(Si,Xi),

where h̄(S,X) = h(S,X)− (N −n)−1 ∑i∈F\V h(Si,Xi), and v̂ j denotes the
projection coefficient given by

v̂ j =

[
1
N ∑

i∈F
h̄(Si,Xi){h̄(Si,Xi)}T

]−1 1
n ∑

i∈V

[
ϕ val‐eff

i j (0, β̂ \ j, ŵ j)h̄(Si,Xi)
]

ä Step 3: Estimate the variance

V̂ar(ϕ A
j ) = V̂ar(ϕ val‐eff

j )− v̂T
j

[
1
N ∑

i∈F
h̄(Si,Xi){h̄(Si,Xi)}T

]−1

v̂ j

with V̂ar(ϕ val‐eff
j ) = n−1 ∑i∈V

{
ϕ val‐eff

i j (0, β̂ \ j, ŵ j)
}2

ä Step 4: Output the test statistic

T (α)
n (ϕ A

j ) =

{
1,

∣∣∣∑i∈V ϕ A
i j(0, β̂ \ j, ŵ j,h, v̂ j)

∣∣∣≥√
nV̂ar(ϕ A

j )z1−α/2

0, otherwise

11/17



Theory

ä Define ϕ A
j (h) the augmented score function with h(S,X)

ä Theorem. Under mild conditions
u For any function h, the proposed test statistic is asymptotically valid

lim
n→∞

PH0, j

{
T (α)

n (ϕ A
j (h)) = 1

}
= α

u T (α)
n (ϕ A

j (h)) is more powerful than T (α)
n (ϕ val‐eff

j ) in the sense that

lim
n→∞

PH loc
1, j

{
T (α)

n (ϕ A
j (h

⋆)) = 1
}
≥ lim

n→∞
PH loc

1, j

{
T (α)

n (ϕ A
j (h)) = 1

}
> lim

n→∞
PH loc

1, j

{
T (α)

n (ϕ val‐eff
j ) = 1

}
as long as Cov{ϕ j(Y,X),h(S,X)}̸= 0, where

H loc
1, j : β ∗

j =Cn−1/2

and the first inequality is achieved if h = hn and ∥ĥn(S,X)−E(Y | S,X)∥→ 0 sufficiently

fast, where ĥn denotes the imputation model to learn E(Y | S,X) from the chart‐reviewed

sampleV
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Simulation

ä Data generating process

u Xi ∼ N(050,Σ)with σi j = ρ |i− j| for some 0 < ρ < 1 and i = 1, . . . ,104 (N = 104, p = 50)
u Yi | Xi ∼ Bernoulli(Expit(XT

i β ∗)) for i = 1, . . . ,100 (n = 102)
u P(Si = s | Yi = y,Xi) = 0.8I(y = s)+0.2I(y ̸= s) for y,s = 0,1

• In this case,
P(S = 1 | X) = 0.6P(Y = 1 | X)+0.2

and β ⋆ can be purely identified by (S,X) (Song et al. 2020):

β ⋆ = argmin
β

E
{
−S−0.2

0.6
XT β + log

(
1+ eXT β )}

Song, Hyebin, Ran Dai, Garvesh Raskutti, and Rina Foygel Barber. “Convex and non‐Convex approaches for statistical inference with class‐conditional noisy labels.” Journal of
Machine Learning Research, no. 168 (2020): 1‐58.
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Simulation

ä We test H0,6 : β ⋆
6 = 0 versus H1,6 : β ⋆

6 ̸= 0

u Under H0,6, we generate β ∗ = (β T
1 ,0T

45)
T ∈ R50 with β 1:5 ∼ N(05,I5/

√
5)

ä Power analysis

u Under H1,6, we generate β ∗ = (β T
1:5,β6,0T

44)
T ∈ R50 with β 1:5 ∼ N(05,I5/

√
5),

β6 =C/
√

n forC = 0.5,0.6, . . . ,1.5

ä Choice of h

u h1(S,X) = (S,X6)
T

u h2(S,X; γ̂1) = {S− Expit(XT γ̂1)}(X1, . . . ,X6)
T with

γ̂1 = argmin
γ

∑
i∈F

{
−SiXT

i γ + log
(
1+ eXT

i γ)}
u h3(S,X; γ̂2) = {(S−0.2)/0.6− Expit(XT γ̂2)}(X1, . . . ,X6)

T with

γ̂2 = argmin
γ

∑
i∈F

{(Si −0.2)XT γ/0.6− Expit(XT γ)}(X1, . . . ,X6)
T

14/17



Results
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Take‐away Messages

ä In the conventional literature of missing data, the theory regarding the
semi‐parametric efficiency is well‐established but requires the positivity and
ignorability (MAR) assumptions

ä This work, by directly considering the problem of variance reduction, can be viewed as
an extension of classic semiparametric theory in the sense of relaxing the positivity
assumption

ä Future work

u Two‐phase sampling, the optimal sampling rule, theMAR case

u False discovery rate control

u General high‐dimensional M‐estimation, time‐to‐event models

u · · ·
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Thanks!

Any Questions?
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