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Abstract

Large neural networks have proved remarkably effective in modern deep learning practice, even in the over-
parametrized regime where the number of active parameters is much larger than the sample size. This con-
tradicts the classical perspective that a machine learning model must trade off bias and variance for optimal
generalization. To resolve this conflict, we present a nonasymptotic generalization theory for two-layer neu-
ral networks with ReLU activation function by incorporating scaled variation regularization. Interestingly, the
regularizer is equivalent to ridge regression from the angle of gradient-based optimization, but plays a similar
role to the group lasso in controlling the model complexity. By exploiting this “ridge–lasso duality,”we obtain
new prediction bounds for all network widths, which reproduce the double descent phenomenon. Moreover, the
overparametrized minimum risk is lower than the underparametrized minimum risk when the signal is strong,
and nearly attains the minimax optimal rate over a suitable class of functions. By contrast, we show that
overparametrized random feature models suffer from the curse of dimensionality and thus are suboptimal.

1. Main Results

(i) Functional analysis of learning limit for two-layer ReLU networks.
� We the space consisting of infinite-width two-layer ReLU networks

G =

{
x 7→

∫
Rd+1

(
σ(vTx + b)− σ(b)

)
dα(w) :

∫
Rd+1

‖v‖2 d|α|(w) < ∞
}

(1)

and equipped it with a norm ‖f‖S =
∫
Rd+1 ‖v‖2 d|αf |(w), where the signed measure αf ∈ M2(Rd+1) is

uniquely determined by

f (x) =
∫
Rd+1

(
σ(vTx + b)− σ(b)

)
dαf (w) + f (0).

� Following [1], we proved that functions in G are learning limits of two-layer ReLU networks; that is,
R(f ) < ∞ if and only if ‖f‖S < ∞, where

R(f ) = lim
ε→0

(
inf
θ∈Θ

C(θ) s.t. sup
‖x‖≤ε−1

|g(x;θ)− f (x)| ≤ ε, and g(0;θ) = f (0)
)
,

g(x;θ) =
∑m

k=1 akσ(vTk x+ bk) denotes a finite-width ReLU network and C(θ) =
∑m

k=1

(
‖vk‖22 + |ak|2

)
is the sum of squared norm of parameters.

� For a finite-width network g(·;θ), we define its scaled variation norm as ν(θ) =
∑m

k=1 |ak|‖wk‖2 where
w = (vTk , bk)

T , ∀k.
(ii) Prediction bounds of two-layer ReLU networks for arbitrary width. In order to learn f∗ from the training

sample, we adopt the penalized empirical risk minimization (ERM) framework and seek

θ̂ ∈ arg min
θ∈Θm

Jn(θ;λ) =
1

2n

n∑
i=1

(
yi − g(xi;θ)

)2
+ λν(θ), (2)

where λ > 0 is a regularization parameter. Under Conditions (C1)–(C3), the regularized network estimator
g(·; θ̂) with λ being optimally tuned, satisfies

‖g(·; θ̂)− f∗‖22 ≤ C

[
‖f∗‖2Sm

−(d+3)/d + (σ2ε + ‖f∗‖2S)min
{√

d log(en/d)
n

,
md log(en/d)

n

}]
(3)

with probability at least 1−O(n−C1) for some constants C1, C > 0.
(iii) Reproduce the double descent phenomenon.
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Figure 1: Risk curves for varying network width m from the prediction bound (3) with ‖f∗‖2S/σ
2
ε = 1, d = 6,

and n = 1000. The left panel shows the decomposition of prediction error into approximation and estimation
errors. The right panel shows the same plot but with larger m, from which it is apparent that the second valley
is lower than the first.

� The first valley or underparametrized minimum risk is O((d logn/n)(d+3)/(2d+3)), which occurs at m0 �
(n/(d logn))d/(2d+3).

� The second valley or overparametrized minimum risk is O(
√
d logn/n), which is slightly larger than the

underparametrized minimum risk.
� In finite samples, however, this comparison can be reversed. The second valley is lower than the first

whenever

κ ≡
‖f∗‖2S

σ2ε + ‖f∗‖2S
>

(
1

2

)(2d+3)/d( n

d logn

)3/(2d)

. (4)

When d � logn, the above condition approximately becomes κ > 1/4, or the signal-to-noise ratio
‖f∗‖2S/σ

2
ε = κ/(1− κ) > 1/3.

(iv) Minimax optimality analyses.
� Underparametrized neural networks attain the minimax optimal lower bound over GM = {f ∈ G : ‖f‖S ≤
M} which is proved in [2] for a fixed M > 0.

� Overparametrized neural networks attains the minimax optimal lower bound over ∪M≥0GM : Under some
assumptions on distributions of design and noises, there exists a constant C > 0 such that

inf
f̂

sup
f ∗∈G

E‖f̂ − f∗‖22 ≥
C√

n logn
,

where the infimum is taken over all estimators.

In contrast to two-layer neural networks, random feature models with optimally tuned hyper-parameter suffer
from the curse of dimensionality. Minimizing the ℓ2-regularized empirical risk

1

2n

m∑
k=1

(
yi − hρ0(xi; a)

)2
+
λ

2
‖a‖22

gives the ridge estimator hρ0(·; â(λ)), where hρ0(x; a) = 1√
m

∑m
k=1 akσ(vTk x + bk) denotes the random

feature model. Under Conditions (C2) and (C3), there exists a universal constant C > 0 such that

sup
f ∗∈GM

inf
λ>0

E‖hρ0(·; â(λ))− f∗‖22 ≥
CM

d(min(m,n))1/d
.

2. Assumptions

The samples are independently drawn from the model

yi = f∗(xi) + εi, i = 1, . . . , n,

subject to the following conditions:
(C1) f∗ ∈ GM ≡ {f ∈ G : ‖f‖S ≤ M} for some constant M > 0;
(C2) xi ∼ µ independently, where µ is supported in Bd = {x ∈ Rd : ‖x‖2 ≤ 1};
(C3) εi ∼ N(0, σ2ε) independently and are independent of xi.

3. Ridge–Lasso duality of the scaled variation regularization

(i) Equivalence to ridge regression. The optimization problem (2) is equivalent to

θ̂ℓ2 = arg min
θ∈Θm

{
1

2n

n∑
i=1

(
yi − g(xi;θ)

)2
+
λ

2

m∑
k=1

(a2k + ‖wk‖22)

}
. (5)

Consider the reparametrization θ̃ = T1(θ) defined by ãk = ak

√
‖wk‖2
|ak| , w̃k = wk

√
|ak|

‖wk‖2 if |ak|‖wk‖2 6= 0,

and (ãk, w̃T
k ) = 0 otherwise. After the reparametrization, we have |ãk| = ‖w̃k‖2 and the regularizer becomes∑m

k=1 |ãk|‖w̃k‖2 = 1
2

∑m
k=1(ã

2
k+‖w̃k‖22). Meanwhile, the positive homogeneity of the ReLU function implies

that akσ((xTk , 1)wk) = ãkσ((xTk , 1)w̃k), so that the network function is invariant under the reparametrization.
This observation can be characterized by the following propositions.
� Any solution θ̂ℓ2 to the optimization problem (5) is a solution to the problem (2). Conversely, if θ̂ is a

solution to the optimization problem (2), then T1(θ̂) is a solution to the problem (5).
� Consider the gradient flow for the optimization problem (2) defined by d

dtθ(t) = −∇θJn(θ(t);λ) and for
the problem (5) defined similarly, both initialized at θ(0) = T1(θ0) for an arbitrary θ0 ∈ Θm. Then the
trajectories of the two gradient flows coincide.

(ii) Connection to the group lasso. Denote by X = ((xT1 , 1)T , . . . , (xTn , 1)T )T the n× (d+1) design matrix, and
D = diag(I(Xw ≥ 0)) the diagonal indicator matrix for the positivity of Xw. Consider the hyperplanes in
Rd+1 passing through the origin and orthogonal to xi, defined by xTi v + b = 0. These n hyperplanes divide
the parameter space Rd+1 into finitely many regions, denoted by R1, . . . , Rp, such that D stays constant
over (the interior of) each Rj. The number of these regions, p, is at most 2

∑d
j=0

(n−1
j

)
= O

(
d
(en
d

)d).
Taking into account the sign of a, we thus partition the parameter space Rd+2 for (a,wT )T into 2p regions

Qj = [0,∞)×Rj, Qp+j = (−∞, 0)×Rj, j = 1, . . . , p,

and define Dp+j = −Dj. Clearly, Rj and Qj are convex cones. The linearity of the ReLU function over each
Qj and the optimality of θ̂ entail the following collinearity property.
� For any solution θ̂ = (â1, . . . , âm, ŵT

1 , . . . , ŵT
m)T to the optimization problem (2), if (âk, ŵT

k )
T and

(âℓ, ŵT
ℓ )

T lie in the same cone Qj, then ŵk and ŵℓ must be collinear, that is, ŵk = c0ŵℓ for some
constant c0 > 0.

� Consider the “conewise collinearization” reparametrization θ̃ = T2(θ) defined by ãk = sj, w̃k =
1

|Sj|
∑

ℓ∈Sj
|aℓ|wℓ, k ∈ Sj, where Sj = {1 ≤ k ≤ m : (ak,wT

k )
T ∈ Qj}, sj = 1, and sp+j = −1 for

j = 1, . . . , p. . Collect the network weights falling within the same cone and define the aggregated param-
eters B(θ) = (β1(θ), . . . ,β2p(θ)) with βj(θ) =

∑
k∈Sj

|ak|wk. For any θ ∈ Θm, the reparametrization
T2 in satisfies g(xi;θ) = g(xi; T2(θ)) for i = 1, . . . , n and ‖B(T2(θ))‖2,1 = ν(T2(θ)) ≤ ν(θ). Moreover,
the solution θ̂ to the optimization problem (2) satisfies

Jn(θ̂;λ) =
1

2n

∥∥∥∥∥y −
2p∑
j=1

DjXβj(θ̂)

∥∥∥∥∥
2

2

+ λ‖B(θ̂)‖2,1.

4. Nonasymptotic generalization bounds

(i) Underparametrized regime. Under Conditions (1)–(3), if m < n/(d log(en/d)), then the regularized network
estimator g(·; θ̂) with λ = λ2 ≡ C1σε max{m−(d+3)/d,md log(en/d)/n} satisfies

‖g(·; θ̂)− f∗‖22 ≤ C

{
‖f∗‖2Sm

−(d+3)/d + (σ2ε + ‖f∗‖2S)
md log(en/d)

n

}
with probability at least 1−O(n−C2) for some constants C1, C2, C > 0.

(ii) Overparametrized regime. Under Conditions (1)–(3), if m ≥ C1(n logn/d)d/(2(d+3)), then the regularized
network estimator g(·; θ̂) with λ = λ1 ≡ C2σε

√
d log(en/d)/n satisfies

‖g(·; θ̂)− f∗‖22 ≤ C

{
‖f∗‖2Sm

−(d+3)/d + (σ2ε + ‖f∗‖2S)
√

d log(en/d)
n

}
with probability at least 1−O(n−C3) for some constants C1, C2, C3, C > 0.
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