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Abstract

Federated learning, where algorithms are trained across multiple decentralized devices without sharing local
data, is increasingly popular in distributed machine learning practice. Typically, a graph structure G exists
behind local devices for communication. In this work, we consider parameter estimation in federated learning
with heterogeneity in communication and data distribution, coupled with a limited computational capacity of
local devices. We encode the distribution heterogeneity by parametrizing distributions on local devices with a
set of distinct p-dimensional vectors. We then propose to jointly estimate parameters of all devices under the
M -estimation framework with the fused Lasso regularization, encouraging an equal estimate of parameters on
connected devices in G. We provide a general statistical guarantee for our estimator, which can be further
calibrated to obtain convergence rates for various specific problem setups. Surprisingly, our estimator attains
the optimal rate under certain graph fidelity condition on G, as if we could aggregate all samples sharing the
same distribution. If the graph fidelity condition is not met, we propose an edge selection procedure via multiple
testing to ensure the optimality. To ease the burden of local computation, a decentralized stochastic version
of ADMM is provided, with convergence rate O(T−1Log T ) where T denotes the number of iterations. We
highlight that our algorithm transmits only parameters along edges of G at each iteration, without requiring a
central machine, which preserves privacy. To address communication heterogeneity, we further extend it to the
case where devices are randomly inaccessible during the training process, with a similar algorithmic convergence
guarantee. The computational and statistical efficiency of our method is evidenced by simulation experiments
and the 2020 US presidential election data set.

1. Problem setup

(i) Heterogeneous data distribution. The target parameter θ∗u of the local device u is defined as the unique
minimizer

θ∗u = arg min
θ∈Ξ

Mu(θ) ≡ E{mu(z;θ)}, ∀u ∈ V,

where the expectation is taken with respect to the distribution of local samples. To model distribution het-
erogeneity, we introduce the characteristic graph G0 such that device i and device j are connected in G0 if
and only if θ∗i = θ

∗
j .

(ii) Heterogeneous communication among local devices. To avoid the expensive cost of communicating between
local devices and the central server, we consider decentralized federated learning; specifically, we assume
that a communication graph G is given a priori, along whose edges local devices can transmit information
with negligible costs. Here, G is required to be similar but not necessarily equal to G0; see Figure 1 for an
illustration. Moreover, we allow local devices to be off-line randomly during the communication process.
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Figure 1: Decentralized Federated Learning network illustrating communication (red solid lines) and distribution
heterogeneity (blue dashed lines) among local devices with varying target parameters (θ1–θ3).

(iii) Limited computing power of local devices. We consider the case where local devices have such a weak com-
puting power that it will cost prohibitive time to derive local estimators. As such, our goal is to develop a
real-time algorithm so that local devices are only required to perform simple iterations.

2. Methodology

To exploit the similarity between G and G0, we propose the network fusion penalized estimator

Θ̂ = (θ̂u : u ∈ V ) = arg min
Θ

F (Θ) =
1

|V |
∑
u∈V

M̂u(θu) + λR(DΘ), (1)

where Θ = (θu : u ∈ V ) ∈ R|V |×p, DΘ = (θi − θj : (i, j) ∈ E) ∈ R|E|×p, λ is a tuning parameter, and
R(DΘ) =

∑
(i,j)∈E ϕ(θi−θj) with ϕ(·) being a norm defined on Rp. The fused lasso regularization R(DΘ)

encourages an equal estimate for devices connected in G. When G deviates significantly from G0, such an
estimator may be erroneous. We then propose an edge selection procedure.
(i) Edge selection procedure. Since (i, j) ∈ E0 = E(G0) is equivalent to θ∗i = θ

∗
j , we consider the simultaneous

testing of the following null hypotheses H0,(i,j) : θ
∗
i = θ

∗
j versus H1,(i,j) : θ

∗
i ̸= θ

∗
j , (i, j) ∈ E. We construct

a test statistic via Ŵ(i,j) =
{(
θ̂loc
i − θ̂loc

j

)T(
Ω̂i + Ω̂j

)−1(
θ̂loc
i − θ̂loc

j

)}1/2
, where Ω̂i = {niĤi(θ̂

loc
i )}−1

denotes the asymptotic variance of θ̂loc
i . Adopting Bonferroni correction, we select E ∩ E0 by

Ê =
{
(i, j) ∈ E : |Ŵ(i,j)|

2 ≤ χ2p(α/|E|)
}
, (2)

where χ2p(α) is the upper α-quantile of the χ2p distribution. The edge selection procedure can eliminate wrong
edges in E \ E0, and thus ensure the global estimator in (1) achieve the optimal performance.

(ii) Decentralized real-time optimization procedure. To solve the optimization problem (1), we consider the
augmented Lagrangian defined as

L(Θ,B,A) =
1

|V |
∑
i∈V

M̂i(θi) + λ
∑

(i,j)∈E
ϕ(βij − βji)

−
∑

(i,j)∈E

{
αTij(θi − βij) +α

T
ji(θj − βji)

}
+
ρ

2

∑
(i,j)∈E

{
∥θi − βij∥22 + ∥θj − βji∥22

}
,

(3)

where B = (βij,βji : (i, j) ∈ E) and A = (αij,αji : (i, j) ∈ E). To accommodate the weak computing
power of local devices, we adopt one-step stochastic gradient update in the t-th iteration:

θi(t + 1) = θi(t)−η(t)

g̃i(t) + ρ
∑
j∈Ni

(θi(t)− βij(t)− ρ−1αij(t))

 , (4)

where g̃i(t) = |Bi(t)|−1∑
b∈Bi(t)ψi(z

(i)
b ;θi(t)), η(t) denotes the learning rate, Bi(t) denotes the mini-batch

randomly sampled from {z(i)k }nik=1 on device i in the t-th iteration, and g̃i(t) is an unbiased estimator of
∇θM̂i(θ) evaluated at θi(t). Except for local samples, the update equation (4) only requires βij(t) and
αij(t) which can be transmitted from device j. Thus, (4) can be executed in parallel for all devices. With
θi(t + 1), i ∈ V at hand, we then update βij(t) and βji(t) by(

βij(t + 1)
βji(t + 1)

)
= arg min

βij,βji

{
λϕ(βij − βji)

+
ρ

2

(
∥θi(t + 1)− βij − ρ−1αij(t)∥22 + ∥θj(t + 1)− βji − ρ−1αji(t)∥22

)}
.

(5)

The update equation (5) can be implemented on either device i or device j, as long as (θj(t+1),βji(t),αji(t))
or (θi(t+1),βij(t),αij(t)) is transmitted to the corresponding device. For specific choice of ϕ(·), for exam-
ple, ϕ(·) = ∥ · ∥1 and ϕ(·) = ∥ · ∥2, we can obtain an explicit update equation from (5). Finally, we update
αij(t) and αji(t) by (

αij(t + 1)
αji(t + 1)

)
=

(
αij(t)
αji(t)

)
− ρ

(
θi(t + 1)− βij(t + 1)
θj(t + 1)− βji(t + 1)

)
. (6)

Notice that update equation (6) also only requires parameter communication among connected devices. Both
(5) and (6) can be performed in parallel across edges.
We refer to (4) as node optimization step, and (5) and (6) as edge communication step.

3. Assumptions and theoretic guarantees

We maintain the following regularity assumptions.
(A1) Identifiability. E{mu(z;θ)} is convex and twice differentiable with respect to θ, the Hessian matrix

Hu(θ) = ∇2
θE{mu(z;θ)} is Lipschitz continuous at θ∗u.

(A2) Bounded conditional number. The conditional number of Ĥu(θ) is bounded by κ.

(A3) Compatibility factor. For S = E \ E0 ̸= ∅, κS(D) ≡ infΘ
√
|S|∥Θ∥F

R{(DΘ)S} ≥ κ0 > 0, where R{(DΘ)S} =∑
(u,v)∈S ϕ(θu − θv).

Based on Assumptions (A1)–(A3), we obtain the following non-asymptotic bounds regarding both statistical and
algorithmic errors.
(i) Deterministic estimation bound. For noises from any distribution, the penalized M -estimator Θ̂ satisfies

1

|V |
∥Θ̂−Θ∗∥2F ≤ 2κ2

(
ρ2 +

4|S|
κ0

λ2
)
,

where ρ = 1√
|V |

∥ΠKer(D)Ψ̂(Θ∗)∥F , and λ = 1√
|V |
R∗{(D+)T Ψ̂(Θ∗)}, Ψ̂ is the gradient of the empirical

risk function and R∗(·) denotes the Fréchet dual of R(·).

(ii) Probabilistic estimation bound. If the score function ψu(z(u)i ;θ∗u) = ∇θmu(z(u)i ;θ∗u) is sub-Gaussian with
parameter σ2, then we obtain

1

|V |
∥Θ̂−Θ∗∥2F = Op

{
σ2

κ0

(
pK(G)

n|V |
+
p|E \ E0|
n|V |

)}
,

where K(G) is the number of connected components of G. We remark that the optimal estimation error
scales as Op

(
pK(E0)
n|V |

)
.

(iii) Edge selection ensures the optimality of the network fusion estimator. Under mild conditions, the output of
the edge selection procedure maximizes the graph fidelity GFG0

(G) ≡ K(E0)
K(E)+|E\E0|.

(iv) Algorithmic convergence. Under mild conditions, by choosing η(t) = κ/t, we have

1

|V |
E
(
∥Θ− Θ̂∥2F

∣∣∣ z(u)k , 1 ≤ k ≤ nu, u ∈ V
)
≤

2κ2CψLog T
T

,

for sufficiently large T such that κCψ|V |Log T ≥ C|E| for some constant C, where the expectation is taken
with respect to the choice of mini-batches {Bu(t) : u ∈ V, 1 ≤ t ≤ T}.

4. Selected simulation
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Figure 2: Sensitivity to graph corruption. G is obtained by randomly flipping the status of edge in G0 with
probability ϱ. Fed-ADMM-ES is obtained by performing the edge selection procedure on G and Fed-ADMM-
Local-ES is obtained by performing the edge selection procedure on fully connected graph.
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