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ABSTRACT
High-dimensional compositional data are prevalent in many applications. The simplex constraint poses
intrinsic challenges to inferring the conditional dependence relationships among the components forming
a composition, as encoded by a large precision matrix. We introduce a precise specification of the composi-
tional precision matrix and relate it to its basis counterpart, which is shown to be asymptotically identifiable
under suitable sparsity assumptions. By exploiting this connection, we propose a composition adaptive
regularized estimation (CARE) method for estimating the sparse basis precision matrix. We derive rates of
convergence for the estimator and provide theoretical guarantees on support recovery and data-driven
parameter tuning. Our theory reveals an intriguing tradeoff between identification and estimation, thereby
highlighting the blessing of dimensionality in compositional data analysis. In particular, in sufficiently
high dimensions, the CARE estimator achieves minimax optimality and performs as well as if the basis
were observed. We further discuss how our framework can be extended to handle data containing zeros,
including sampling zeros and structural zeros. The advantages of CARE over existing methods are illustrated
by simulation studies and an application to inferring microbial ecological networks in the human gut.
Supplementary materials for this article are available online, including a standardized description of the
materials available for reproducing the work.
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1. Introduction

High-dimensional compositional data, which lie in a high-
dimensional unit simplex, arise in a wide spectrum of
contemporary applications. For example, in metagenomic
studies, the composition of microbial communities can be
comprehensively quantified using 16S rRNA gene or shotgun
metagenomic sequencing, which yields the relative abundances
of thousands of bacterial taxa (Li 2015). Other prominent
examples include the chemical composition of particulate
matter in environmental studies (van Donkelaar et al. 2019),
market shares of industries in economics (Sutton 2007), and
word frequencies of texts in machine learning (Blei and Lafferty
2007). A central task in such applications is to infer the
conditional dependence relationships among the components
forming a composition, which are often represented by an
undirected graphical model and encoded by the inverse
covariance or precision matrix (Lauritzen 1996).

The simplex constraint creates intrinsic challenges to infer-
ence for high-dimensional graphical models and precision
matrices. A conventional method starts with applying the log-
ratio transformation (Aitchison 1982, 2003) to the composi-
tional data, and proceeds with inference as if the transformed
data lie in a Euclidean space. This approach, however, is unsat-
isfactory for our problem in the following respects.
1. The simplex constraint induces negative correlations between

originally independent components, and hence a “null” struc-
ture of the compositional precision matrix away from a diago-
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nal matrix. It is therefore not clear how to impose the sparsity
structure as in the case of Euclidean data.

2. Among the conventional matrix specifications of composi-
tional covariance structures (Aitchison 2003), the log-ratio
and isometric log-ratio covariance matrices treat the com-
ponents asymmetrically, while the variation matrix is not
a covariance matrix and the centered log-ratio covariance
matrix is not invertible. Thus, none of these specifications
give rise to a compositional precision matrix that is permu-
tation invariant under sparsity assumptions.

3. Since each log-ratio involves more than one component, con-
ditional dependence relationships among the log-ratios are
more difficult to interpret, especially when model selection
or support recovery is the primary purpose.

A potential way to resolve these difficulties is to return to
the basis precision matrix �0, that is, the precision matrix of
the log-basis variables that generate a composition; see Section 2
for the formal definition. Since the log-basis variables are free of
constraints, �0 can be assumed to be sparse and interpreted in
the usual manner. However, owing to the many-to-one relation-
ship between the basis and the composition, �0 is unidentifiable
from compositional data in any finite dimension, making it a
seemingly unrealistic goal.

A closely related question was addressed by Cao, Lin, and Li
(2019). They showed that the basis covariance matrix �0 = �−1

0
belonging to a suitable sparsity class is approximately identifiable
and indistinguishable from the centered log-ratio covariance
matrix �c as the dimensionality increases. Their idea relies on a
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fundamental decomposition, originally due to Aitchison (2003),
that relates the basis and compositional covariance structures.
On the other hand, such a relationship for the precision matrices
has long been lacking in the literature, preventing the problem of
precision matrix estimation from being solved. Any attempt to
apply Cao, Lin, and Li’s (2019) argument directly to the precision
matrix setting would face the necessity of imposing sparsity
assumptions simultaneously on the covariance and precision
matrices, which is unreasonable and impractical.

This article bridges the conceptual gap by introducing a
precise specification of the compositional precision matrix
and establishing a transparent relationship between the basis
and compositional precision matrices. This novel connection
inherits a similar low-rank plus sparse form from the covari-
ance decomposition mentioned above, allowing us to prove
the approximate identifiability of �0 under suitable sparsity
assumptions. These results are of independent interest and
would be useful for other inference problems for compositional
data where precision matrices play a role. Building on our pre-
cision matrix specification and its nice properties, we adopt the
idea of constrained �1-minimization (Cai, Liu, and Luo 2011) to
develop a composition adaptive regularized estimation (CARE)
method for estimating the sparse basis precision matrix. We
further derive rates of convergence for the resulting estimator
under various matrix norms, and provide theoretical guarantees
on support recovery and data-driven parameter tuning.

Our theoretical results reveal an intriguing tradeoff between
identification and estimation. More specifically, as the dimen-
sion p grows, the identification error decreases, while the esti-
mation error increases. Remarkably, when p log p � n with
n being the sample size, the estimation error dominates the
identification error and the CARE estimator achieves the mini-
max optimal rates for unconstrained data in Cai, Liu, and Zhou
(2016). This entails that, in sufficiently high dimensions, our
method performs as well as if the basis were observed. This
blessing of dimensionality has direct implications for practical
data analysis. For example, in microbiome studies, the number
of bacterial taxa depends on the taxonomic level under examina-
tion, which should be judiciously chosen to facilitate inference
and interpretation.

1.1. Related Work

There is a vast and rapidly growing literature on high-
dimensional graphical models and precision matrix estimation.
The existing methods fall roughly into three categories. The
neighborhood-based approach exploits a nodewise regression
formulation of Gaussian graphical models, and fits the high-
dimensional regressions using regularization methods such as
the lasso, Dantzig selector, and scaled lasso (Meinshausen and
Bühlmann 2006; Yuan 2010; Ren et al. 2015; Fan and Lv 2016).
Instead, the likelihood-based approach estimates the precision
matrix as a whole by directly penalizing the joint Gaussian
likelihood with the graphical lasso (Yuan and Lin 2007; Fried-
man, Hastie, and Tibshirani 2008) or nonconvex penalties (Lam
and Fan 2009). Finally, the CLIME-related methods are moti-
vated by modified score functions and solve constrained �1-
minimization or penalized empirical risk minimization prob-
lems (Cai, Liu, and Luo 2011; Zhang and Zou 2014; Liu and

Luo 2015; Cai, Liu, and Zhou 2016). Their ideas are to sim-
plify the loss function and yield theoretical and computational
advantages.

Extensions of the problem to compositional data have
attracted considerable attention in the computational biol-
ogy literature. The SPIEC-EASI procedure proposed by Kurtz
et al. (2015) treats the centered log-ratio transformed data
as Euclidean data and directly applies the usual neighbor-
hood selection and graphical lasso methods. Fang et al. (2017)
developed an �1-penalized likelihood method called gCoda by
parameterizing the logistic normal likelihood with �0. The
identifiability issue under the parameterization was noted but
not rigorously addressed. A related method using the Bayesian
graphical lasso was considered by Schwager et al. (2017). Yuan,
He, and Deng (2019) introduced an �1-penalized CD-trace
approach by borrowing the idea of D-trace loss from Zhang and
Zou (2014). The derivation, however, relies on an exchangeabil-
ity condition, which is equivalent to the row sums of �0 being
all equal. Zhang and He (2019) employed the sparse columnwise
inverse operator (SCIO) method of Liu and Luo (2015) to find an
approximate inverse of the sample centered log-ratio covariance
matrix. Their method is based on the same heuristic argument
as that of SPIEC-EASI, and would suffer from similar conceptual
issues.

The difficulties and ambiguities in deriving and lending sup-
port to the aforementioned methods showcase the lack of con-
venient mathematical tools for the study of compositional preci-
sion matrices. As commented by Aitchison (2003, p. 64), before
introducing the tools of compositional covariance matrices,

we would not expect that excellent tool of the wide
open spaces (or Rd) of North America, namely the
barbecue, necessarily to be an appropriate concept
for cooking in the confined space (or Sd) of a low-
cost housing flatlet in Hong Kong. If our concepts
fail to serve us in new situations we must invent new
concepts.

Similarly, we would not expect the oven for roasting Cantonese
ducks (or compositional covariance matrices) to be perfect for
roasting Peking ducks (or compositional precision matrices). We
shall therefore suggest a new concept, whose mathematical form
was first defined but not explored for inferential use by Aitchison
(2003), along with the associated tools that are more convenient
and powerful for our purpose.

1.2. Organization of the Article

In Section 2, we present the precision matrix specification and
its properties, thereby addressing the identifiability problem.
Section 3 motivates and describes the CARE methodology.
Section 4 establishes theoretical guarantees for our proposed
estimator in terms of rates of convergence, support recovery,
and data-driven choice of tuning parameters. Extensions to data
containing zeros and a perturbation theory are developed in
Section 5. Simulation studies and an application to human gut
microbiome data are presented in Sections 6 and 7, respectively.
Section 8 contains some final discussion. Proofs and additional
discussion and numerical results are provided in the supplemen-
tary materials.
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We close this section by introducing some notation to be used
throughout the article. For any vector a, matrix A, and 1 ≤ r ≤
∞, we denote by ‖a‖r the vector �r-norm, and ‖A‖max, ‖A‖Lr ,
and ‖A‖F the entrywise �∞-norm, matrix �r-norm, and Frobe-
nius norm, respectively. Also, λmin(A) and λmax(A) denote the
smallest and largest eigenvalues of A, respectively, and A � 0
stands for A being symmetric and positive definite. Finally, we
write Ip for the p × p identity matrix, 1p the p-vector of 1s, and
ej the vector with 1 in the jth component and 0 elsewhere.

2. Precision Matrix Specification and Identifiability

Consider a composition X = (X1, . . . , Xp)T that takes values in
the (p − 1)-dimensional unit simplex Sp−1 = {(x1, . . . , xp) :
xj > 0 for j = 1, . . . , p,

∑p
j=1 xj = 1}. Let W = (W1, . . . , Wp)T

with Wj > 0 for all j be a latent vector, called the basis, that
generates the observed composition via the normalization

Xj = Wj∑p
i=1 Wi

, j = 1, . . . , p.

To specify a basis covariance structure compatible with the log-
ratio form of compositional covariance structure, we define the
log-basis vector Y = (Y1, . . . , Yp)T with Yj = log Wj for all
j. Denote by �0 = (ω0

ij) the precision matrix of Y, which we
call the basis precision matrix. In the important case where Y
is multivariate normal, so that X is logistic normal (Aitchison
2003, Property 6.1), it follows from nonparanormal graphical
model theory (Liu, Lafferty, and Wasserman 2009) that Wi and
Wj are conditionally independent given the other p−2 variables
if and only if ω0

ij = 0. The graphical model interpretation of the
precision matrix has also been extended to certain discrete and
non-Gaussian cases (Loh and Wainwright 2013; Morrison, Bap-
tista, and Basor 2022). Hence, recovering the graphical model
structure among the p basis variables amounts to estimating
the support of �0. In microbiome studies, X represents the
relative abundances of bacterial taxa measured by 16S rRNA
gene or shotgun metagenomic sequencing, while W represents
the absolute abundances that are of primary interest but not
directly observed. It has been found that sample abundance mea-
surements after accounting for undersampling are well approx-
imated by a log-normal distribution (Limpert, Stahel, and Abbt
2001; Paulson et al. 2013), and thus the nonparanormal graph-
ical model seems plausible. In such applications, our goal is to
estimate the basis precision matrix �0 from the observed data
on X.

Denote by �0 = (σ 0
ij ) = �−1

0 the basis covariance
matrix, that is, the covariance matrix of Y. The centered log-
ratio transformation (Aitchison 2003) gives the transformed
data Z = (Z1, . . . , Zp)T with Zj = log{Xj/g(X)}, where
g(X) = (∏p

j=1 Xj
)1/p is the geometric mean of X. Accordingly,

the centered log-ratio covariance matrix �c = (σ c
ij) is the covari-

ance matrix of Z. Although �0 is generally unidentifiable, Cao,
Lin, and Li (2019) showed that it is close to its compositional
counterpart �c in the sense that

‖�0 − �c‖max = O
(‖�0‖L1

p

)
.

This identifiability bound derives from the representation of �c
in terms of �0:

�c = �0 − vpvT
p �0 − �0vpvT

p + vpvT
p �0vpvT

p , (1)

where vp = 1p/
√p. As a result, under sparsity assumptions on

�0 such that ‖�0‖L1 = o(p), �0 is asymptotically identifiable
and indistinguishable with �c as p → ∞. This fact entails that
�c serves as a good proxy for �0 in sparse covariance estimation.
Intuitively, we would expect a well-defined inverse of �c to be
a good approximation of �0. However, owing to the zero-sum
constraint on Z, �c has an eigenvalue 0 and the corresponding
eigenvector vp (Aitchison 2003, Theorem 4.6).

A conceptually simple remedy for the singularity of �c is to
find a generalized or pseudo-inverse. Let �c = VDcVT be the
spectral decomposition of �c, where V is a p × (p − 1) matrix
of eigenvectors and Dc = diag(d1, . . . , dp−1) with d1 ≥ · · · ≥
dp−1 > 0. The rank-deficient matrix �c can be made invertible
by a rank-1 correction. More precisely, for any constant ρ > 0,
�c + ρvpvT

p is nonsingular and has the spectral decomposition

�c + ρvpvT
p = (V, vp)

(
Dc 0
0 ρ

)
(V, vp)

T ,

whose inverse is given by

(
�c + ρvpvT

p
)−1 = (V, vp)

(
D−1

c 0
0 ρ−1

)
(V, vp)

T .

The Moore–Penrose inverse of �c can then be expressed as

�+
c = VD−1

c VT = (
�c + ρvpvT

p
)−1 − 1

ρ
vpvT

p . (2)

We now define �c = (ωc
ij) = �+

c as the compositional
precision matrix, since it provides a full parameterization of
compositional inverse covariance structure and is identifiable
from the observed compositional data. The definition of �+

c
and expression (2) were mentioned by Aitchison (2003, Sec.
5.6), but its use for modeling and inference was not pursued
therein. Indeed, since �c is indirectly defined through �c, it is
less interpretable and may not be very useful without an explicit
link to the basis precision matrix �0. Fortunately, by substituting
(1) into (2) and using the Sherman–Morrison formula, we can
establish the following relationship between �c and �0.

Theorem 1. The following relationship between �c and �0
holds:

�c = �0 − �01p1T
p �0

1T
p �01p

.

While there can be many possible ways to specify the compo-
sitional precision matrix, Theorem 1 illustrates a major advan-
tage of our particular specification: it admits a representation as
the sum of its basis counterpart �0 and a low-rank correction,
which inherits a similar form from the decomposition of �c in
(1). Here, the rank-1 component reflects a global effect of com-
positionality across all rows and columns of �0, and is related
to the information loss due to the normalization operation. In
light of this decomposition, statistical wisdom learned from the
literature on low-rank plus sparse matrix recovery problems
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(Candès et al. 2011; Chandrasekaran, Parrilo, and Willsky 2012;
Fan, Liao, and Mincheva 2013) suggests that a suitably sparse �0
can be separated from the compositionality effect. The following
proposition collects some useful properties of �c.

Proposition 1. The matrix �c satisfies the following properties:

(a) �c�c = G, where G = Ip − p−11p1T
p ;

(b) G�c = �c and �c1p = 0;
(c) λmin(�0) ≤ λ+

min(�c) ≤ λmax(�c) ≤ λmax(�0), where
λ+

min(�c) denotes the smallest positive eigenvalue of �c;
(d) σ c

jjω
c
jj ≥ (1 − 1/p)2 for j = 1, . . . , p.

Part (a) in Proposition 1 indicates that �c is an approximate
inverse of �c with G playing the role of the identity matrix
for centered log-ratio vectors. In fact, any p-vector a satisfies
aT1p = 0 if and only if Ga = a (Aitchison 2003, App. A). Part
(b) parallels Theorem 4.6 of Aitchison (2003), part (c) confines
the range of the positive eigenvalues of �c to within that of �0,
and part (d) is analogous to the inequality that σ 0

jj ω
0
jj ≥ 1. These

properties are essential for the development of methodology and
theory based on �c.

To impose sparsity on the target matrix �0, we consider the
class of sparse precision matrices

Uq(s0(p), Mp)

=

⎧⎪⎨
⎪⎩ � = (ωij) : � � 0, max

1≤j≤p

p∑
i=1

|ωij|q ≤ s0(p),

‖�‖L1 ≤ Mp, 1/R ≤ λmin(�) ≤ λmax(�) ≤ R

⎫⎪⎬
⎪⎭ ,

where 0 ≤ q < 1, R > 1 is a constant, and s0(p) and Mp are
bounded away from 0 and may diverge with p. This class covers
a wide range of sparse precision matrices and is similar to those
considered for unconstrained high-dimensional data (Cai, Liu,
and Luo 2011; Ren et al. 2015; Cai, Liu, and Zhou 2016). Under
the assumption that �0 belongs to the class Uq(s0(p), Mp), �c is
generally not sparse, but remains close to �0 and preserves some
of its properties, as formalized by the following results.

Proposition 2. Suppose that �0 ∈ Uq(s0(p), Mp). Then

R−3

p
≤ ‖�0 − �c‖max ≤ RM2

p

p
.

Proposition 3. Suppose that �0 ∈ Uq(s0(p), Mp). Then

‖�c‖L1 ≤ (1 + R2)Mp, 1/R ≤ λ+
min(�c) ≤ λmax(�c) ≤ R.

Proposition 2 entails that the sparse basis precision matrix
�0 is approximately identifiable provided that Mp = o(√p).
The identification error due to approximating �0 by �c vanishes
asymptotically as p → ∞. This blessing of dimensionality
motivates us to use �c as a proxy for �0 and develop procedures
for estimating �0 through �c. In particular, when Mp does not
grow with p, the identification error decays at the rate of O(p−1),
which is sharp and cannot be improved. Proposition 3 gives
bounds on the matrix �1-norm and positive eigenvalues of �c,
which are analogous to those for �0. Finally, we observe that
if the eigenvalue condition in the definition of Uq(s0(p), Mp)
is replaced by λmax(�)/λmin(�) ≤ R as in Cai, Liu, and

Zhou (2016), then the ‖ · ‖max-distance between �0 and �c in
Proposition 2 can be similarly bounded as

‖�0 − �c‖max ≤ R‖�0‖L1√p
≤ RMp√p

.

In this case, the approximate identifiability of �0 still holds as
long as Mp = o(√p).

3. Composition Adaptive Regularized Estimation

Suppose that (X1, Z1), . . . , (Xn, Zn) are independent realiza-
tions of (X, Z). Denote by �̂c = (σ̂ c

ij) = n−1 ∑n
k=1(Zk −

Z̄)(Zk − Z̄)T the sample centered log-ratio covariance matrix,
where Z̄ = n−1 ∑n

k=1 Zk. In view of Proposition 2, we shall
develop an estimator of �0 via the proxy matrix �c based on
the observed data or �̂c. However, �c is in general not sparse,
although it is entrywise close to the sparse matrix �0. Also, we
shall not impose restrictive distributional assumptions. Thus, it
is unclear whether existing neighborhood or likelihood-based
methods can effectively leverage the proxy �c. A further look at
the CLIME estimator reveals that its rate of convergence under
the entrywise �∞-norm depends crucially on the matrix �1-
norm bound Mp (Cai, Liu, and Luo 2011, Theorem 6). This,
together with the fact from Proposition 2 that the identification
error between �0 and �c can be tightly bounded in terms of Mp,
motivates us to consider a CLIME-type estimator for �0.

Without loss of generality, we assume that the log-basis vector
Y has mean 0. Since our inference goal is to estimate the preci-
sion matrix �0 of Y, it is conventional to impose the following
two types of tail conditions on Y.

Condition 1 (Sub-Gaussian tail). Assume that log p = o(n) and
there exist some constants η > 0 and K > 0 such that

sup
s∈Rp, ‖s‖2=1

E[exp{η(sTY)2/ Var(sTY)}] ≤ K.

Condition 2 (Polynomial-type tail). Assume that p = O(nγ ) for
some constant γ > 0 and there exist some constants ε > 0 and
K ′ > 0 such that

sup
s∈Rp, ‖s‖2=1

E|sTY|4γ+4+ε ≤ K ′.

If the log-basis Y were observable, then �̂�0 would concen-
trate around Ip, where �̂ is the sample basis covariance matrix.
In our setting, however, Y is not observable and our estimator
should be based on �̂c. Since �0 and �c are asymptotically
indistinguishable when Mp = o(√p), by part (a) of Proposi-
tion 1 we expect that �̂c�0, similar to �̂c�c, would concentrate
around G. The following lemma shows that this is indeed the
case.

Lemma 1. Suppose that �0 ∈ Uq(s0(p), Mp) with Mp = o(√p).
Under Condition 1 (or Condition 2), for any ξ > 0, there exists
some constant C0 > 0 such that

‖�̂c�0 − G‖max ≤ C0

(√
log p

n
+ Mp√p

)

with probability at least 1 − O(p−ξ ) (or 1 − O(p−ξ/2 + n−ε/8)).
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Lemma 1 allows us to construct a constrained �1-
minimization procedure for estimating �0 in a similar spirit
to the CLIME approach of Cai, Liu, and Luo (2011). More
specifically, we consider the following optimization problem:

minimize ‖�‖1 subject to ‖�̂c� − G‖max ≤ λ, (3)

where λ > 0 is a tuning parameter and can be easily chosen
to ensure the feasibility of �0 provided that Mp = o(√p). It
is important to note that the second term Mp/

√p of the error
bound in Lemma 1 is due to the departure of �c from �0.
The main differences from the case of unconstrained data are
that problem (3) incorporates the identifiability gap between �0
and �c, and that the matrix G plays the role of the identity
matrix. The overall optimization problem (3) can be further
decomposed into p independent vector minimization problems.
As a result, the estimator �̃ = (ω̃ij) = (ω̃1, . . . , ω̃p) is defined
through the solutions ω̃j to the optimization problems

minimize ‖ωj‖1 subject to
∥∥∥∥�̂cωj −

(
ej − 1p

p

)∥∥∥∥
max

≤ λj,

(4)
where λj > 0 are tuning parameters. To adapt to the variability
and sparsity of the columns of �0, λj are allowed to vary from
column to column, thus differing from the CLIME method
where the tuning parameter is fixed. In practice, λj can be
chosen by cross-validation, which will be further discussed in
Section 4.2. Finally, we define our CARE estimator �̂ = (ω̂ij) by
symmetrizing �̃:

ω̂ij = ω̂ji = ω̃ijI(|ω̃ij| ≤ |ω̃ji|) + ω̃jiI(|ω̃ij| > |ω̃ji|).

It is worth mentioning that our methodology differ from
those of Cao, Lin, and Li (2019) and Cai, Liu, and Zhou (2016)
in some important ways. First, while the COAT method is
optimization-free, our method requires solving an optimization
problem, whose dependence on the basis–composition rela-
tionship is implicit. This would make the theoretical develop-
ment technically more challenging. Second, our method consists
of a single-step constrained �1-minimization procedure with
column-specific tuning parameters, which departs markedly
from the two-step ACLIME procedure and adapts better to
the identification error in our problem. An alternative method
that follows the ACLIME approach more closely is discussed in
Supplementary Section S.2.

4. Theoretical Properties

We investigate the theoretical properties of the CARE estimator.
In Section 4.1, we derive rates of convergence under various
matrix norms and provide a support recovery guarantee for the
estimator �̂. Data-driven choice of the tuning parameters λj
is justified in Section 4.2. In deriving the rates of convergence,
we explicitly characterize the impact of dimensionality on the
degree of identifiability and decompose the total error into an
estimation error and an identification error. Results of this kind
are rare in the literature, but see Fan, Liao, and Mincheva (2013)
and Cao, Lin, and Li (2019).

4.1. Rates of Convergence and Support Recovery

We first present the rates of convergence for the estimator �̂

under different matrix norms.

Theorem 2. Suppose that �0 ∈ Uq(s0(p), Mp) with Mp = o(√p)

and the tuning parameters are chosen as λj � √
(log p)/n +

Mp/
√p for all j. Under Condition 1 (or Condition 2), for any

ξ > 0, there exists some constant C > 0 such that the estimator
�̂ satisfies

‖�̂ − �0‖max ≤ C
(

Mp

√
log p

n
+ M2

p√p

)
,

‖�̂ − �0‖L1 ≤ Cs0(p)

(
Mp

√
log p

n
+ M2

p√p

)1−q
,

1
p
‖�̂ − �0‖2

F ≤ Cs0(p)

(
Mp

√
log p

n
+ M2

p√p

)2−q

with probability at least 1 − O(p−ξ ) (or 1 − O(p−ξ/2 + n−ε/8)).

Note that the error bound under the matrix �1-norm also
holds under any matrix �r-norm with 1 ≤ r ≤ ∞, since �̂

and �0 are symmetric (Cai, Liu, and Zhou 2016, Lemma 7.2).
All the error bounds in Theorem 2 have an appealing form that
decomposes into two terms. The first term represents the esti-
mation error due to the estimation of �c based on the observed
data, while the second term arises from the identification error
between �c and �0. Note that the latter is due to the intrinsic
difficulty of nonidentifiability in estimating �0; as a result, it
cannot be eliminated by any other methods. Theoretically, this
can be seen from Proposition 2, where the identification error
between �c and �0 is bounded away from zero. Moreover, it
is important to note that the dimension p plays opposite roles
in these two terms: it contributes a factor of log p to the former
but a factor of p−1/2 to the latter. This leads to a clear tradeoff
between identification and estimation, or a tradeoff between the
blessing and the curse of dimensionality, a striking phenomenon
not observed in precision matrix estimation for unconstrained
data. The quantity Mp also has a role to play in the tradeoff
and has a larger impact on the identification error than on the
estimation error. As p becomes sufficiently large, the estimation
error will dominate the identification error, as summarized in
the following corollary.

Corollary 1. Assume that the conditions of Theorem 2 hold. If
Mp = o(

√
p(log p)/n), then the estimator �̂ satisfies

‖�̂ − �0‖max ≤ CMp

√
log p

n
,

‖�̂ − �0‖L1 ≤ CM1−q
p s0(p)

(
log p

n

)(1−q)/2
,

1
p
‖�̂ − �0‖2

F ≤ CM2−q
p s0(p)

(
log p

n

)1−q/2

with probability at least 1 − O(p−ξ ) or 1 − O(p−ξ/2 + n−ε/8).

Corollary 1 requires that Mp = o(
√

p(log p)/n), which is
stronger than the identifiability condition Mp = o(√p) and
suggests a phase transition phenomenon for optimal estimation.
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In particular, the resulting rates of convergence under the matrix
�r-norm with 1 ≤ r ≤ ∞ and Frobenius norm match the min-
imax optimal rates for unconstrained data (Cai, Liu, and Zhou
2016). This indicates that, in sufficiently high dimensions, the
CARE estimator performs as well as if the basis were observed,
highlighting the blessing of dimensionality in compositional
data analysis.

Based on the entrywise �∞-error bound in Theorem 2, we
define the hard-thresholded estimator �̂

t = (ω̂t
ij) with ω̂t

ij =
ω̂ijI(|ω̂ij| > τnp), where τnp = C(Mp

√
(log p)/n + M2

p/
√p).

Our next result shows that, under an additional minimum signal
assumption, the hard-thresholded estimator �̂

t recovers the
support of �0 successfully.

Theorem 3. Assume that the conditions of Theorem 2 hold. If
min(i,j):ω0

ij 
=0 |ω0
ij| > 2τnp, then the estimator �̂

t satisfies

sgn(ω̂t
ij) = sgn(ω0

ij)

for all i, j = 1, . . . , p with probability at least 1 − O(p−ξ ) or 1 −
O(p−ξ/2 + n−ε/8).

4.2. Data-Driven Choice of λj

We describe the cross-validation procedure for choosing the
tuning parameters λj in the p vector optimization problems (4).
We randomly split the whole dataset into a training set with
sample size n1 and a test set with sample size n2 = n−n1, where
n1 � n2 � n. To measure the predictive performance of ω̃j, we
consider the loss function

L(ωj, �c) = 1
2
ωT

j �cωj −
(

ej − 1p

p

)T
ωj, (5)

whose derivative ∂L/∂ωj = �cωj − (ej − 1p/p) corresponds to
the constraint in problem (4). In a similar spirit to the D-trace
loss of Zhang and Zou (2014), we write the loss function (5) in
matrix form as

L(�, �c) = 1
2

tr(��c�) − tr(G�).

There is a subtle connection between L(�, �c) and the CD-trace
loss function (Yuan, He, and Deng 2019)

LD(�, �0) = 1
2

tr(G�G�0G�) − tr(G�),

where � is a positive definite basis precision matrix. This loss
function is minimized at �0 only when the exchangeability
condition G�0 = �0G holds. Similarly, if G�0 = �0G, from
G�0G = �c and G2 = G we see that the two loss functions
coincide at �0.

For j = 1, . . . , p and the bth split, denote by ω̂
(1b)
j (λj) the

estimator with tuning parameter λj based on the training set,
and by �̂

(2b)

c the sample centered log-ratio covariance matrix
based on the test set. We choose the optimal value λ̂j of λj by
minimizing

CV(λj) = 1
B

B∑
b=1

L{ω̂(1b)
j (λj), �̂(2b)

c },

and compute the estimator ω̂j(λ̂j) based on the whole dataset.
Let λ̂ = (λ̂1, . . . , λ̂j) and then the data-driven estimator �̂(̂λ)

is obtained by combining ω̂j(λ̂j) for all columns. The procedure
searches for the optimal λ̂j through a grid of points δj�/N, � =
1, . . . , N, for some sufficiently large δj > 0. In practice, δj is set
to the smallest value such that ω̂j = 0; it is seen immediately
from problem (4) that such a choice is δj = 1−p−1. To establish
theoretical guarantees for the data-driven estimator, we consider
for simplicity the case of B = 1 and omit the superscript b.
The rate of convergence for the data-driven estimator �̂

(1)
(̂λ) =

(ω̂
(1)
1 (λ̂1), . . . , ω̂(1)

p (λ̂p)) is given by the following result.

Theorem 4. Assume that Condition 1 holds, �0 ∈ Uq(s0(p), Mp)
with Mp = o(√p), log N = o(n), and min1≤j≤p δj ≥
NC0(

√
(log p)/n + Mp/

√p) for C0 > 0 defined in Lemma 1.
Then the data-driven estimator �̂

(1)
(̂λ) satisfies

1
p
‖�̂(1)

(̂λ) − �0‖2
F = Op

{
s0(p)

(
Mp

√
log p

n
+ M2

p√p

)2−q}
.

5. Extensions to Data Containing Zeros

We have so far confined our discussion to data lying in the
strictly positive simplex. In many applications, however, the
compositions are not directly observable but instead estimated
from count data. When the count data are sparse, as is the case in
microbiome studies, the compositional data obtained by simple
normalization may contain an abundance of zeros and thus pre-
vent the direct application of log-ratio transformations. In such
situations, it is useful to distinguish between sampling zeros,
which are due to undersampling of rare yet present taxa, and
structural zeros, which represent truly absent taxa regardless of
the sampling or sequencing depth (Agresti 2013, Sec. 10.6). We
describe how our framework can be extended to accommodate
these two types of zeros in Sections 5.1 and 5.2.

5.1. Sampling Zeros

In the presence of only sampling zeros, the underlying pro-
portions are still positive and can be estimated by many exist-
ing methods, ranging from easy-to-implement zero replace-
ment and variable correction procedures (Shi, Zhou, and Zhang
2022) to more sophisticated approaches that borrow informa-
tion across samples and taxa (Zhang and Lin 2019; Cao, Zhang,
and Li 2020). This amounts to observing a noisy version of the
compositional data, which are subject to measurement error
that should be accounted for in subsequent analysis. Since the
optimization problem (3) depends on the data only through
�̂c, it suffices to consider a perturbed covariance matrix �̌c =
�̂c + E. For simplicity, consider the CARE estimator �̂ ≡ �̂(λ)

with λj = λ for all j, and let �̌ be the perturbed version with
�̂c replaced by �̌c. Let λ0 = ‖�̂c�0 − G‖max. The following
perturbation result characterizes the impact of the measurement
error E on the estimator �̌.

Theorem 5. Suppose that �0 ∈ Uq(s0(p), Mp). If λ = λ0 +
Mp‖E‖max, then the estimator �̌ satisfies
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‖�̌ − �̂‖max ≤ 2Mp(λ0 + p−1) + 3M2
p‖E‖max.

It is readily seen from Theorem 5 that as long as E is small
enough so that Mp‖E‖max = O(λ0), the second term in the
perturbation bound is small. Furthermore, by Lemma 1 we
can choose λ0 � √

(log p)/n + Mp/
√p with high probabil-

ity, so that the term p−1 is also negligible. Then the bound
becomes

‖�̌ − �̂‖max = O
(

Mp

√
log p

n
+ M2

p√p

)
,

matching the entrywise �∞-error bound in Theorem 2. This
indicates that the measurement error would have no notable
effect on the performance of the CARE estimator.

5.2. Structural Zeros

Structural zeros may occur when the frequency of zeros in
the count data is higher than the sampling model predicts. A
popular approach to this problem is zero-inflated models, which
are mixtures of a point mass at zero (zero part) and a count data
distribution with positive mean (nondegenerate part). One can,
in principle, use a zero-inflated model for multivariate count
data (e.g., Tang and Chen 2019; Xu, Demmer, and Li 2021; Zeng
et al. 2022) to obtain strictly positive composition estimates from
the nondegenerate part of the model; our approach can then be
applied to these positive estimates as described earlier. The low-
rank assumptions underlying some of these models, however,
may lead to rank-deficient covariance structures, which render
the estimation of a sparse precision matrix impossible. A remedy
for the rank degeneracy problem is to construct an unbiased
estimator of the centered log-ratio covariance matrix by inverse
probability weighting. More specifically, suppose that Xkp >

0 for all k and let Z(p)

k = (Z(p)

k1 , . . . , Z(p)

k,p−1)
T with Z(p)

kj =
log(Xkj/Xkp) be the additive log-ratio transformation of Xk. Let
�kj be the latent variable indicating whether Xkj comes from
the nondegenerate part, and πj the corresponding probability.
In practice, �kj and πj are unknown but can be estimated from
the adopted zero-inflated model. The covariance matrix �(p) of
Z(p)

k can then be estimated by �̂(p) = (σ̂
(p)

ij ) with

σ̂
(p)

ij = 1
n

n∑
k=1

�ki�kj

πij
Z(p)

ki Z(p)

kj ,

where πij = πiπj if i 
= j and πi otherwise. By the relationship
between �c and �(p) (Aitchison 2003, eq. (4.28)), we obtain an
unbiased estimator of �c:

�̌c = FTH−1�̂(p)H−1F,

where F = (Ip−1, −1p−1) and H = Ip−1 + 1p−11T
p−1. Now we

can substitute �̌c for �̂c in the optimization problem (4). The
performance of this extension, of course, hinges on the quality
of the estimates of �kj and πj. A detailed investigation is needed
but beyond the scope of this article.

5.3. Limitations

Despite the extensions outlined above, important limitations
of our method exist. First, since structural zeros cannot be
handled by the log transformation per se, our method should be
combined with a zero-inflated model to estimate the covariance
structure of its nondegenerate part. More generally, the covari-
ance structure of the zero part and the interaction between the
zero part and the nondegenerate part are also of interest, whose
modeling remains an open problem. Second, our measurement
error framework for dealing with sampling zeros requires the
perturbation term E to be sufficiently small, which may not be
satisfied when the true proportions are extremely small and the
total counts are limited. Developing more robust and efficient
methods for these scenarios is an interesting topic.

6. Simulation Studies

In this section, we examine the numerical performance of the
CARE estimator through simulation studies under different sce-
narios and compare it with a variety of existing methods. To
implement our procedure, by splitting ωj into a positive part
ω+

j and a negative part ω−
j , we reformulate problem (4) as the

following linear programming problem:

minimize 1T
p (ω+

j + ω−
j ) subject to(

�̂c −�̂c
−�̂c �̂c

)(
ω+

j
ω−

j

)
≤

(
λj1p + ej − 1p/p
λj1p − ej + 1p/p

)
,

ω+
j ≥ 0, ω−

j ≥ 0,

where the inequalities apply componentwise. These problems
have the same size as, and hence comparable computational
efficiency to, those in the CLIME procedure, and can be solved
by many existing algorithms. Here we use an implementation of
the parametric simplex method (Vanderbei 2020), which pro-
duces the entire solution path by solving the linear programming
problem only once. Compared with interior-point and simplex
methods, the parametric simplex method is more efficient for
large-scale sparse learning problems (Pang et al. 2017).

We compare our estimator to three previously proposed
methods: CD-trace (Yuan, He, and Deng 2019), gCoda (Fang
et al. 2017), and SPIEC-EASI with the graphical lasso (Kurtz
et al. 2015). The oracle estimator, which is obtained by applying
the CLIME approach to the basis as it were observed, is also
included for comparison. This ideal estimator serves as the
benchmark for assessing whether the compositionality effect has
been removed.

6.1. Simulation Results for Compositional Data

We first consider the case with positive compositional data
and no zero correction is needed. The compositional data were
generated as follows. First, we independently sampled Yk =
(Yk1, . . . , Ykp)

T , k = 1, . . . , n, from a multivariate normal distri-
bution Np(0, �−1

0 ). Then we generated Wk = (Wk1, . . . , Wkp)
T

and Xk = (Xk1, . . . , Xkp)
T , k = 1, . . . , n, through the trans-

formations Wkj = exp(Ykj) and Xkj = Wkj/
∑p

i=1 Wki for
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Table 1. Means and standard errors (in parentheses) of performance measures for
different methods in model (a) over 100 replications.

Method

p CARE Oracle CD-trace gCoda SPIEC-EASI

Spectral norm loss
50 2.46 (0.12) 2.29 (0.12) 3.21 (0.03) 3.47 (0.05) 3.35 (0.04)

100 2.70 (0.10) 2.59 (0.10) 3.24 (0.02) 3.62 (0.04) 3.44 (0.02)
200 2.96 (0.07) 2.91 (0.08) 3.27 (0.02) 3.70 (0.02) 3.37 (0.02)
400 3.25 (0.03) 3.24 (0.04) 3.34 (0.02) 3.76 (0.02) 3.50 (0.03)

Matrix �1-norm loss
50 3.28 (0.20) 3.05 (0.23) 3.53 (0.06) 3.86 (0.06) 3.93 (0.06)

100 3.45 (0.15) 3.36 (0.16) 3.61 (0.07) 3.98 (0.05) 3.89 (0.03)
200 3.61 (0.12) 3.56 (0.11) 3.64 (0.05) 4.07 (0.03) 3.91 (0.03)
400 3.77 (0.07) 3.76 (0.07) 3.76 (0.07) 4.18 (0.03) 3.99 (0.03)

Frobenius norm loss
50 6.79 (0.29) 6.31 (0.25) 9.83 (0.08) 10.93 (0.21) 10.37 (0.13)

100 10.30 (0.25) 9.84 (0.27) 14.22 (0.07) 16.35 (0.24) 14.87 (0.04)
200 16.68 (0.19) 16.33 (0.19) 20.21 (0.07) 23.98 (0.18) 20.59 (0.07)
400 27.04 (0.15) 26.85 (0.16) 29.12 (0.12) 34.50 (0.18) 29.71 (0.33)

True positive rate (%)
50 90.5 (2.6) 94.5 (2.3) 74.9 (2.8) 74.5 (6.4) 54.8 (4.0)

100 89.1 (2.2) 91.8 (2.0) 60.4 (2.4) 49.2 (5.8) 65.6 (2.3)
200 83.7 (1.6) 85.9 (1.4) 60.9 (1.5) 39.6 (3.5) 66.9 (1.6)
400 68.2 (1.4) 69.6 (1.5) 53.0 (1.1) 34.2 (2.2) 65.4 (3.4)

False positive rate (%)
50 7.4 (0.7) 6.0 (0.7) 3.6 (0.2) 9.3 (1.0) 5.9 (0.4)

100 3.6 (0.3) 3.3 (0.2) 1.1 (0.1) 2.9 (0.4) 2.3 (0.1)
200 1.3 (0.1) 1.2 (0.1) 0.5 (0.0) 1.2 (0.1) 1.2 (0.1)
400 0.4 (0.0) 0.4 (0.0) 0.2 (0.0) 0.5 (0.1) 0.5 (0.1)

j = 1, . . . , p. As a result, Wk and Xk follow multivariate log-
normal and logistic-normal distributions, respectively. We con-
sidered the following four models for generating �0 with diverse
network structures.

(a) Band graph: Let �1 = (ω1
ij) and �0 = �1 + (|λmin(�1)| +

0.01)Ip, where ω1
i,i+1 = ω1

i+1,i = 0.8, ω1
i,i+2 = ω1

i+2,i = 0.5,
ω1

ij = 0 for |i − j| ≥ 3, and ω1
ii were drawn from a uniform

distribution U(1, 2).
(b) Hub graph: The p nodes were divided into blocks of size 5.

For each block, one hub was selected and connected to the
other nodes in the same block, and each edge weight was
set to 0.8 or 0.5 with equal probability. The diagonal entries
were set as in model (a).

(c) Block graph: The p nodes were equally divided into five
blocks. Each pair of nodes in the same block were connected
with probability 20/p, and each edge weight was set as in
model (b). The diagonal entries were set large enough as in
model (a) so that �0 was positive definite.

(d) Random graph: Each pair of nodes were connected with
probability 4/p. The edge weights were set as in model (b)
and the diagonal entries were set as in model (a).

Throughout the simulations, we took the sample size n =
200 and dimension p = 50, 100, 200, 400. Five performance
measures are adopted: the spectral norm, matrix �1-norm and
Frobenius norm losses for evaluating the estimation accuracy,
and the true positive and false positive rates for assessing the
support recovery performance. For the CARE and oracle meth-
ods, the tuning parameters λj were chosen by 5-fold cross-
validation.

The simulation results for models (a) and (b) over 100 repli-
cations are reported in Tables 1 and 2, and those for models
(c) and (d) in Supplementary Tables S4 and S5. Overall, we see

Table 2. Means and standard errors (in parentheses) of performance measures for
different methods in model (b) over 100 replications.

Method

p CARE Oracle CD-trace gCoda SPIEC-EASI

Spectral norm loss
50 2.04 (0.17) 1.91 (0.20) 2.29 (0.11) 3.47 (0.07) 3.68 (0.09)

100 1.99 (0.12) 1.92 (0.14) 2.23 (0.05) 3.77 (0.12) 3.55 (0.12)
200 2.23 (0.15) 2.16 (0.12) 2.83 (0.09) 3.82 (0.06) 3.75 (0.04)
400 2.44 (0.15) 2.36 (0.14) 2.94 (0.07) 4.02 (0.01) 3.43 (0.02)

Matrix �1-norm loss
50 3.60 (0.35) 3.17 (0.43) 3.77 (0.22) 6.03 (0.18) 6.35 (0.16)

100 4.22 (0.47) 3.76 (0.56) 4.38 (0.35) 7.97 (0.30) 7.21 (0.34)
200 4.59 (0.42) 4.35 (0.33) 6.39 (0.23) 7.49 (0.06) 7.05 (0.11)
400 5.69 (0.50) 5.48 (0.44) 7.15 (0.17) 8.69 (0.03) 6.91 (0.09)

Frobenius norm loss
50 5.49 (0.24) 5.18 (0.23) 6.13 (0.16) 11.27 (0.31) 13.16 (0.33)

100 7.78 (0.23) 7.54 (0.24) 9.03 (0.14) 16.47 (0.45) 17.84 (0.43)
200 11.68 (0.25) 11.45 (0.27) 13.97 (0.13) 25.03 (0.75) 26.94 (0.04)
400 16.84 (0.12) 16.69 (0.14) 20.18 (0.10) 34.12 (0.08) 35.95 (0.02)

True positive rate (%)
50 87.6 (3.8) 89.4 (3.8) 79.7 (3.3) 56.9 (2.0) 54.4 (4.6)

100 85.8 (3.3) 87.4 (3.0) 65.6 (3.1) 30.5 (2.6) 63.6 (8.9)
200 81.7 (2.4) 83.2 (2.3) 53.4 (2.4) 14.8 (2.2) 71.9 (2.2)
400 82.4 (1.5) 83.1 (1.5) 48.5 (1.1) 10.2 (0.4) 90.4 (1.1)

False positive rate (%)
50 2.1 (0.5) 1.4 (0.5) 2.1 (0.3) 4.4 (0.4) 10.0 (1.8)

100 1.2 (0.2) 1.0 (0.2) 0.4 (0.1) 1.1 (0.1) 4.5 (0.4)
200 0.7 (0.1) 0.7 (0.1) 0.1 (0.0) 0.3 (0.0) 1.1 (0.1)
400 0.2 (0.0) 0.2 (0.0) 0.0 (0.0) 0.1 (0.0) 0.5 (0.0)

that the CARE and oracle methods perform nearly equally well
and outperform the other three competitors by a large margin
in almost all settings. In particular, the performance of CARE
tends to be closer to that of the oracle estimator in higher
dimensions, confirming the blessing of dimensionality revealed
by our theory. Among the three previously proposed methods,
CD-trace seems to outperform gCoda and SPIEC-EASI in terms
of estimation accuracy. In addition, SPIEC-EASI appears to have
some advantages for recovering more edges in high dimensions
over CD-trace and gCoda, but it does so at the expense of an
inflated false positive rate.

To compare the support recovery performance without using
a specific tuning approach, the receiver operating characteristic
(ROC) curves for all methods under models (a)–(d) are shown
in Figure 1. We observe that the ROC curves of the CARE
and oracle methods dominate those of the other three methods
uniformly in low to moderate dimensions, as well as in high
dimensions when the false positive rates are small. These results
embody the superiority of CARE in terms of support recovery.
Moreover, SPIEC-EASI performs better for models (a) and (c)
than for models (b) and (d) in low dimensions, indicating that
its performance may depend more critically on the network
topology. The higher right tails of ROC curves for the competing
methods in certain high-dimensional settings may not be rele-
vant in practice, since only the sparse regime is of interest.

6.2. Simulation Results for Count Data

To illustrate how our method work with zeros, we next examine
the case where the generated data are counts and include many
sampling zeros. We adopted the graph structure of model (a) and
the same settings as before for generating (Yk, Xk), k = 1, . . . , n,
except that the mean vector of Yk was drawn from a uniform dis-
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Figure 1. The ROC curves for different methods in models (a)–(d) with p = 50, 100, 200, 400.

tribution U(0, 5) to allow a higher diversity. The count data were
then generated from a multinomial distribution Mult(mk, Xk),
where mk were sampled uniformly from 15p, . . . , 15p + 500
and p, . . . , 2p, resulting in about 35% and 70% zero counts,
respectively, for p = 50 and 100.

The following methods are included in our comparisons:
CARE using the compositional data directly (Comp+CARE),
CARE, CD-trace, and SPIEC-EASI using composition estimates
from the logistic normal multinomial model of Zhang and
Lin (2019) (LNM+CARE, LNM+CD-trace, and LNM+SPIEC-
EASI, respectively), and CARE using the +0.5 variable correc-
tion procedure of Shi, Zhou, and Zhang (2022) (VC+CARE).
The simulation results reported in Table 3 suggest that the
proposed method works reasonably well with count data that
contain many zeros, with the performance diminishing as the
proportion of zeros increases. Moreover, model-based, more
computationally intensive methods for composition estimation
such as LNM tend to improve the performance of our method.
All combined with LNM, CARE still exhibits a performance
gap over CD-trace and SPIEC-EASI by identifying substantially
more true positives.

7. Application to Gut Microbiome Data

The gut microbiome is considered to participate in many
host physiological processes and have a tremendous impact
on human health. Reconstructing ecological networks from
metagenomic data holds the potential to reveal complex micro-
bial interaction patterns in the gut. Some studies (e.g., Busiello
et al. 2017) have found that species interaction networks are
sparse and have related the property to explorability and dynam-
ical robustness, thus meeting the requirement of our method.
Here we illustrate our method by applying it to a dataset in
Wu et al. (2011), which was previously analyzed by Cao, Lin,
and Li (2019) using covariance estimation. In this study, DNA
from fecal samples of 98 healthy subjects were quantified by
454/Roche pyrosequencing of 16S rRNA gene segments, yield-
ing 87 genera that appeared in at least one sample. These subjects
were divided into a lean group of n = 63 samples with body mass
index (BMI) < 25 and an obese group of n = 35 samples with
BMI ≥ 25. To ensure stable detection of microbial interactions,
we filtered out too rare genera and retained p = 40 genera that
were present in at least four samples in each group. We adopted
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Table 3. Simulation results for count data: means and standard errors (in paren-
theses) of performance measures for different methods in model (a) over 100
replications.

Method

p Zeros Comp+CARE LNM+CARE VC+CARE LNM+CD-trace LNM+SPIEC-EASI

Spectral norm loss
50 35% 2.46 (0.12) 3.21 (0.09) 3.40 (0.08) 3.41 (0.06) 3.42 (0.04)

70% – 3.78 (1.09) 14.78 (3.80) 3.67 (0.79) 3.44 (0.03)
100 35% 2.91 (0.09) 3.44 (0.04) 3.47 (0.06) 3.47 (0.04) 3.60 (0.02)

70% – 3.82 (0.97) 14.18 (1.59) 3.76 (0.88) 3.60 (0.01)
Matrix �1-norm loss

50 35% 3.23 (0.19) 3.83 (0.11) 4.07 (0.14) 3.82 (0.09) 3.97 (0.06)
70% – 4.61 (1.24) 17.16 (3.93) 4.44 (1.09) 3.94 (0.08)

100 35% 3.60 (0.11) 3.99 (0.07) 4.09 (0.10) 3.87 (0.07) 3.98 (0.05)
70% – 4.52 (1.14) 16.59 (1.63) 4.39 (1.18) 3.99 (0.05)

Frobenius norm loss
50 35% 6.79 (0.21) 9.43 (0.24) 10.13 (0.13) 10.31 (0.12) 10.74 (0.21)

70% – 10.61 (0.65) 28.74 (5.87) 10.66 (0.50) 10.98 (0.13)
100 35% 11.16 (0.20) 14.79 (0.20) 14.81 (0.15) 15.18 (0.14) 15.84 (0.10)

70% – 15.58 (0.45) 42.97 (5.17) 15.41 (0.43) 16.04 (0.04)
True positive rate (%)

50 35% 91.2 (3.0) 63.8 (5.4) 43.3 (5.0) 42.7 (4.0) 37.9 (7.0)
70% – 24.3 (4.1) 10.3 (2.6) 15.9 (3.2) 17.5 (4.0)

100 35% 83.3 (2.5) 47.7 (3.7) 32.5 (3.4) 28.7 (4.0) 28.8 (3.6)
70% – 16.8 (2.7) 6.1 (1.9) 9.4 (1.9) 12.1 (2.0)

False positive rate (%)
50 35% 7.3 (0.8) 10.8 (1.2) 8.2 (1.0) 4.0 (0.5) 5.1 (0.8)

70% – 9.1 (1.2) 4.1 (0.7) 4.0 (0.8) 3.4 (0.8)
100 35% 2.8 (0.2) 3.7 (0.4) 2.7 (0.4) 1.0 (0.2) 1.6 (0.2)

70% – 3.6 (0.4) 1.2 (0.2) 1.0 (0.3) 1.4 (0.3)

Table 4. Numbers of positive and negative edges and stability of networks for
different methods applied to the gut microbiome data.

Number of all edges Number of stable edges

Method Positive Negative Positive Negative Network stability

Lean group
CARE 9 19 5 14 0.766
CD-trace 9 10 4 1 0.582
gCoda 12 16 2 5 0.577
SPIEC-EASI 12 18 4 6 0.680

Obese group
CARE 4 8 2 3 0.708
CD-trace 16 15 1 1 0.538
gCoda 4 6 0 3 0.636
SPIEC-EASI 13 9 1 3 0.551

the multisample approach of Cao, Zhang, and Li (2020) to deal
with excess zeros and obtained a positive composition matrix.

For each group, we estimated the basis precision matrix using
different methods. The results are represented as microbial inter-
action networks among the genera. For the CARE method, the
tuning parameters were selected by 10-fold cross-validation. To
assess the stability of support recovery, we randomly subsam-
pled 80% of the subjects and recorded the proportion of edges
that reoccurred in the subsample. We repeated the subsam-
pling procedure 100 times and adopt the average proportion of
reproduced edges as a measure of network stability. Finally, only
those edges reproduced in at least 80% of the subsamples were
retained in the networks. The networks identified by the CARE
method are shown in Figure 2, and those by the other methods
in Supplementary Figures S3–S5. The numbers of positive and
negative edges and stability of networks for all methods are
summarized in Table 4.

As depicted in Figure 2, the network structures revealed by
the CARE method for the lean and obese groups look markedly

different. The genus–genus interactions for the obese group are
substantially fewer and less complex than those for the lean
group, agreeing with the previous finding that obese micro-
biomes induce a less modular metabolic network than lean
microbiomes (Greenblum, Turnbaugh, and Borenstein 2012).
From Table 4 we see that CARE maintains the highest network
stability and detects more stable edges than the other methods.
Interestingly, the networks constructed by CARE involve more
negative than positive interactions; a similar phenomenon was
observed by Cao, Lin, and Li (2019) in microbial correlation
networks and tends to be supported by the ecological theory of
microbiome stability (Coyte, Schluter, and Foster 2015). More
discussion on the identified microbial interactions can be found
in Supplementary Section S.3.3.

8. Discussion

The specification of the compositional precision matrix and
the associated tools developed in this article establish a natural
link to the basis inverse covariance structure. The blessing of
dimensionality derived from this inverse covariance relationship
formalizes the intuition that the nonidentifiability due to not
knowing the magnitude of the basis spreads over all p com-
ponents and becomes negligible as the dimensionality grows.
These insights are of both theoretical and practical importance,
opening up the possibility of investigating existing and develop-
ing new methodology for estimating the basis precision matrix.
The general idea is to use �c as a proxy for �0 and develop
procedures for estimating �0 through �c. Although �c is not
sparse, its matrix �1-norm can be tightly controlled, a fact that
can be directly exploited by a compositionally adjusted CLIME
procedure. Extensions to neighborhood and likelihood-based
methods seem possible but remain to be explored. Despite
the similarities we have discussed, our problem also differs
from general low-rank plus sparse matrix recovery problems in
important ways. In particular, the rank in our problem is known
and need not be estimated from the data. Also, the usual spiked
eigenvalue assumption (e.g., Fan, Liao, and Mincheva 2013) is
not met. These features prevent methods based on nuclear norm
regularization or principal components from being applied to
our context.

Our conditional dependence modeling approach relies on the
log transformation, which is not artificial but natural in at least
two ways. First, as a consequence of a large number of indepen-
dent multiplicative effects, the log-normal distribution is usually
a better model than the normal for many real data with small
means, large variances, and positive values (Limpert, Stahel,
and Abbt 2001). This is, for instance, the case for microbiome
data since bacterial abundance generally follows an exponential
growth model with additional variability. Second, methods and
theory induced by the log transformation, such as multinomial
logistic and log-linear models, have been fundamental to cat-
egorical data analysis (Agresti 2013). In light of the intimate
connections between the two areas, the log transformation is a
sensible choice that is compatible with many related methods
and theory. Nevertheless, it is not the only viable way to deal
with the simplex constraint. Notably, square root and power
transformations have been applied to compositional data in
regression and principal component analysis (Scealy and Welsh
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Figure 2. Microbial interaction networks identified by the CARE method for the (a) lean and (b) obese groups in the gut microbiome data. Positive and negative edges
are displayed in green and red, respectively, with thicknesses proportional to their strengths. Node sizes are proportional to the relative abundances of genera among all
samples.

2011; Scealy et al. 2015). It would be worthwhile to develop
notions of conditional dependence and graphical models under
these alternative transformations, which we leave for future
work.

Supplementary Materials

The supplementary materials contain the proofs of theoretical results, addi-
tional discussion and numerical results, and R code and data.
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