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Abstract

Federated learning has emerged as a significant focus in distributed machine learn-
ing practice, where algorithms are trained across multiple decentralized devices with-
out sharing local data. In this work, we consider parameter estimation in federated
learning with heterogeneity in communication and data distribution, and with limited
computational capacity of devices. We model the distribution heterogeneity using a
latent graph, in which devices are adjacent if, and only if, they share the same tar-
get parameter. With knowledge of a surrogate graph, we propose to jointly estimate
parameters for all devices under the M -estimation framework with the fused Lasso reg-
ularization. We provide a general statistical guarantee for our regularized estimator
under arbitrary surrogate graphs, which can be further calibrated to convergence rates
for various specific setups. If the surrogate graph satisfies a graph fidelity condition,
then our estimator is optimal as if we could aggregate all samples sharing the same
distribution. Otherwise, we propose an edge selection procedure via multiple testing
to ensure the optimality. To reduce the burden of local computation, a decentralized
stochastic version of ADMM, termed FedADMM, is provided with convergence rate
O(T−1 log T ), where T denotes the number of iterations. Our algorithm transmits only
parameters along edges of G at each iteration without requiring a central machine.
FedADMM is further extended to the case where devices are randomly inaccessible
during the training process with a similar convergence guarantee. The computational
and statistical efficiency of our method is evidenced by simulation experiments and
the 2020 US presidential election data set.
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1 Introduction

In recent years, the proliferation of intelligent devices such as smartphones and wearable

technology has facilitated unprecedented access to personal data. This wealth of informa-

tion has been actively utilized to develop personalized models, with applications ranging

from predicting text inputs and scheduling traffic patterns, to recognizing emotions and

monitoring health (Cui et al. 2021; Accettura et al. 2013; Strain et al. 2020; Wu et al. 2020).

However, the analysis of personal data presents unique challenges. First, personal data are

naturally stored in a distributed manner, and the total number of devices greatly exceeds

the per-device sample size (Mach and Becvar 2017), making it impossible to aggregate and

analyze all the data on a single machine. Legislative regulations add another layer of com-

plexity by prohibiting data sharing across devices (Voigt and von dem Bussche 2017). In

addition, the computational resources of intelligent devices are typically limited, restricting

processing capabilities to mini-batches of samples at a time. Lastly, as no two users are

identical (Li and Meng 2021), data stored on different devices essentially stem from distinct

distributions. These critical issues have propelled the rise of federated learning in practical

applications (Konečnỳ et al. 2016).

Federated averaging (FedAvg), arguably the most prevalent algorithm in federated learn-

ing, addresses some of these challenges (McMahan et al. 2017). A typical FedAvg iteration

includes: (1) running several steps of stochastic gradient descent (SGD) in parallel on an

independently sampled subset of devices, (2) sending the updated local parameters to a cen-

tral server, and (3) averaging these parameters using prespecified weights. Notably, FedAvg

aligns with data privacy regulations, requiring only parameter transmission. It effectively

manages large numbers of devices through device sampling and adapts to the limited com-

putational capabilities of devices by restricting the number of SGD steps performed locally.

Importantly, the output of FedAvg converges to the pooled estimator as if all data were

aggregated on a single machine (Li et al. 2020), a desirable feature when our goal is to infer

the whole population.
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Figure 1: Estimation error as the number of aggregated devices increases, based on 103

independent repeated experiments.

While the FedAvg offers a template for overcoming algorithmic barriers in analyzing

personal data, it unfortunately overlooks the unique characteristics of individuals. This

oversight can potentially lead to erroneous results, as demonstrated below. Suppose that

each device, enumerated by k = 1, . . . , 100, contains two independent observations from the

distribution N(k/50, 1). Our goal is to estimate the population mean of the first device.

Here, as true parameters differ across local devices, aggregating data from other devices

can introduce bias. Notably, the bias can offset the benefits of variance reduction gained

through aggregation. This aggregation–heterogeneity trade-off further explains why the

FedAvg estimator performs poorly (Zhao, Wang, and Lin 2023). In fact, from the viewpoint

of transitional inference (Hankinson 1987), the optimal strategy is to aggregate data from

the devices whose target parameters are as close to that of the first device as possible, giving

rise to the “optimally aggregated estimator.” As the number of aggregated devices increases,
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we observe that the squared error for the optimally aggregated estimator has a U shape,

which confirms the trade-off between aggregation and heterogeneity.

Interestingly, for optimal estimation it is necessary to have knowledge of device rankings

based on the distance between their true parameters. In our example, the performance of

the “Randomly aggregated estimator,” which is derived by randomly aggregating devices,

degrades rapidly as the number of aggregated devices increases. In fact, without the prior

information of device rankings, Zhao, Wang, and Lin (2023) showed that no estimator can

achieve a convergence rate faster than the local estimator under certain smoothness assump-

tions of the distribution heterogeneity. This intrinsic inability to adapt underscores the

importance of acquiring the precise ranking information. However, this acquisition is a con-

siderable challenge, particularly when the total number of devices is large since each local

device has its unique ranking of other devices.

To relax the requirement of knowing accurate device rankings, in this study we propose

the use of adjacency structures to model distribution heterogeneity. Specifically, we posit

a latent graph G0 = (V , E0), where the node set V represents all the devices and the edge

set E0 comprises all pairs of devices that share the same target parameter. While these

adjacency structures impose stronger restrictions on target parameters, we do not require

precise knowledge of G0, but rather a surrogate graph G = (V , E) with potential discrepancies.

Interestingly, G must encapsulate some relevant knowledge about G0. Otherwise, we prove

in Proposition 1 that it is impossible to adapt to unknown adjacency structures.

To leverage the prior knowledge encapsulated by G, we incorporate a network-fusion

regularization to be defined in Section 3 into a general M -estimation framework, which en-

courages an equal estimate for the target parameters of devices connected in G. We further

give a deterministic risk bound in Theorem 2 for the network-fusion penalized M -estimator

which holds irrespective of the distribution of score functions. For sub-Gaussian score func-

tions, the deterministic risk bound has an explicit form OP

[
p{K(G) + S}(log V )/(nV )

]
in

Theorem 3, where p is the dimension of parameter space, K(G) denotes the number of con-
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nected components of G, S is the number of edges present in G but absent from G0, n denotes

per-device sample size, and V denotes the total device counts. Our theoretical bound also

exhibit the aggregation–heterogeneity trade-off: to achieve a smaller S, edges in G need to be

eliminated, resulting in a larger value of K(G). Moreover, if the quantity K(G0)/{K(G)+S},

which we term graph fidelity, does not tend to zero as the graph size grows, then our pro-

posed estimator attains the optimal rate, as if we could aggregate all identically distributed

samples separately. We then propose an edge selection procedure through multiple test-

ings so that the graph fidelity is maximized. We prove the model selection consistency in

Theorem 5.

After addressing distribution heterogeneity, we propose FedADMM to overcome algo-

rithmic challenges. Specifically, FedADMM is a decentralized, stochastic version of the

Alternating Direction Method of Multipliers (ADMM) algorithm. Each FedADMM itera-

tion comprises a node optimization step and an edge communication step, both of which do

not require the coordination of a central server. At the node optimization step, local devices

need only perform one-step SGD, which is feasible for devices with limited computational

capacity. At the edge communication step, only parameters are transmitted among con-

nected devices. This device-to-device algorithm is effective for handling a large number of

devices, especially when the communication graph is sparse (Boyd et al. 2006). We prove in

Theorem 6 that FedADMM converges with the rate O(T−1 log T ), where T denotes the total

number of iterations. We further demonstrate in Corollary 7 that our algorithm attains the

same convergence rate under malicious random block of devices in the optimization process.

1.1 Related Work

Federated learning is indeed a subset of distributed learning, albeit with additional con-

straints derived from practical scenarios. Existing distributed statistical methods often work

under the assumption of independently and identically distributed samples and cover a wide

array of topics such as M -estimation, nonparametric regression, principal component anal-
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ysis, and Bayesian methods (Zhang, Duchi, and Wainwright 2013; Battey et al. 2018; Fan

et al. 2019; Banerjee, Durot, and Sen 2019; Fan, Guo, and Wang 2021; Jordan, Lee, and

Yang 2019). Some studies explore heterogeneous distributed learning, assuming that the im-

pact of covariates on outcomes can be split into a common effect and device-specific effects

(e.g., Zhao, Cheng, and Liu 2016; Duan, Ning, and Chen 2021). However, this requires prior

knowledge of which covariates give rise to device-specific effects.

Additionally, Richards, Negahban, and Rebeschini (2021) investigated scenarios where

each node holds a high-dimensional linear model, and two nodes are linked if the difference

in their target parameters is also sparse. Nonetheless, the minimal per-device sample size

required therein grows linearly with the graph size, even in the noiseless setting. More re-

cently, Zhang, Liu, and Zhu (2022) modeled heterogeneity in distributed linear regressions

via a latent cluster structure but assumed this latent structure could be consistently esti-

mated. Our approach differs as we provide non-asymptotic analyses based on a surrogate

graph, offering broader applicability. Moreover, while these distributed statistical methods

are valid under respective assumptions and require few communication rounds, they neces-

sitate precise task solving on each local device, making them more suitable for multi-center

research (Sidransky et al. 2009).

Another related area to this study is the network Lasso penalized estimation, or trend

filtering on graphs (Hallac, Leskovec, and Boyd 2015; Hütter and Rigollet 2016; Wang et al.

2016, among others). These methods assume parameter sparsity over a predefined graph

or network. For Gaussian mean estimation with total variation regularization, Hütter and

Rigollet (2016) derived a sharp convergence rate. Hallac, Leskovec, and Boyd (2015) lever-

aged distributed ADMM to solve optimization problems analogous to ours. Our work gen-

eralizes the former to general M -estimation and the latter to a stochastic federated settings.

6



1.2 Organization of This Paper

The rest of the paper is organized as follows. We present some necessary notation and prob-

lem setup in Section 2. Section 3 contains details of the network-fusion penalized estimator,

its theoretical properties, and the edge selection procedure through multiple testings. In

Section 4, we introduce the FedADMM together with its extension to derive our estimator

and show their algorithmic consistency. Section 5 consists of simulations, and a real-world

data analysis is included in Section 6.

2 Preliminaries

We first introduce some notation used in this article.

2.1 Notation

The ℓq-norm on Rp norm is denoted by ∥·∥q for q ≥ 1. Define B(a; r) = {x : ∥x−a∥2 ≤ r} as

the ball in Rp with center a and radius r. Let S be any set, and |S| denotes the cardinality

of S. For a matrix A = (a1, . . . , aq)
T ∈ Rq×p, we define the ℓ1/ϕ-norm of A as R(A) =∑q

j=1 ϕ(aj), where ϕ : Rp → [0,∞) is a norm on Rp. The notation (ak : k ∈ S)T represents

the submatrix formed by the rows of A indexed by S. For a symmetric matrix A, λmax(A)

represents its maximum eigenvalue, and λmin(A) represents its minimum eigenvalue. If A is

positive semi-definite, λ+
min(A) denotes its smallest nonzero eigenvalue.

The graph G = (V , E) is defined by its node set V = {1, . . . , V } and edge set E . The

cardinalities of V and E are denoted by V and E, respectively. For an edge e = (i, j) ∈ E , let

e+ represent max(i, j) and e− represent min(i, j). The signed incidence matrix with respect

to E is denoted by D ∈ {−1, 0, 1}E×V , where the (e, i)th entry is given by Dei = I(i =

e+)− I(i = e−) for all e ∈ E and i ∈ V , with I(·) being the indicator function. The Moore-

Penrose inverse of D is denoted by D†. When referring to connected components of a graph,

we use the notation C1, . . . , CK , where K represents the number of connected components in

G. To emphasize the dependence of K on G, we sometimes write K(G).
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2.2 Problem Setup

Suppose that on the device u we can observe n independent copies z
(u)
k from an unknown

distribution Pu for all u ∈ V . Under a general M -estimation framework, the target parameter

θ∗u for the device u is defined by

θ∗u = argmin
θ∈Ξu

Mu(θ) ≡ EPu{mu(z;θ)}. (1)

We refer to Ξu as the natural parameter set, which is a bounded subset of Rp containing

interior points. Throughout this article, we take the dimension p of target parameters as

fixed. This framework includes a wide spectrum of statistical models as a special case,

including mean estimation, linear regression models, logistic regression models, Gaussian

graphical models, and additive hazard models. See Examples 1–5 in the Supplementary

Material for details. The Hessian matrix of Mu(θ) is denoted by Hu(θ). To ensure the

identifiability of target parameters, we need certain regularity conditions.

Condition 1 (Identifiability of target parameters). The population Hessian matrices have

bounded eigenvalues,

λ ≤ min
u∈V

inf
θ∈Ξu

λmin{Hu(θ)} ≤ max
u∈V

sup
θ∈Ξu

λmax{Hu(θ)} ≤ λ.

Condition 1 is imposed on the population level, ensuring that (1) has a unique solution

within θ ∈ Ξu. We also presume that ∩uΞu ⊃ B(0p; r0) ⊃ {θ∗u}u, where r0 is some posi-

tive constant. This additional assumption allows us to identify target parameters without

disclosing any information about distribution heterogeneity.

With the identifiability of θ∗u, we need only focus on the heterogeneity that stems from

different θ∗u, which can be described by the adjacency structure among devices.

Definition 1 (Characteristic graph). A graph G0 = (V , E0) is the characteristic graph of a

set of probability distributions {Pu; u ∈ V} if θ∗u = θ∗v is equivalent to (u, v) ∈ E0, where θ∗u
is defined by (1) for all u.
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We also refer to G0 as the characteristic graph of a set of parameters {θ∗u; u ∈ V}. By

definition, G0 is composed of multiple disjoint cliques Ck, k = 1, . . . , K(G0), and each clique

has its own unique target parameter. Depending on the number of cliques, our model can

span across a broad spectrum, from homogeneous distributed learning to multi-task learning

setups. For instance, when K(G0) = 1, it indicates that all device parameters are equivalent,

in which case our model aligns with the homogeneous distributed learning setup considered

in Stich (2019). Conversely, when K(G0) = V , it implies that all device parameters are

unique, leading us to the multi-task learning setup described by Smith et al. (2017). The

number of cliques K(G0) quantifies the degree of heterogeneity.

We can alternatively represent heterogeneous target parameters using piecewise constant

functions (Fan and Guan 2018; Gao, Han, and Zhang 2020). To see this, define the set

consisting of matrices whose rows, after some enumeration, are piecewise constant with at

most K pieces,

Ξp(V,K, π) =

{
(θ1, . . . , θV )

T ∈ RV×p : there exist sequences {aj}Kj=0 and {µj}Kj=1 such

that 0 = a0 ≤ · · · ≤ aK = V and θπ(i) = µj for integers i ∈ (aj−1, aj]

}
,

where π is the enumeration mapping, incorporated to aggregate pieces having the same value.

Noting that π can be arbitrary, the target parameter set, composed by all matrices whose

rows derive their values from at most K distinct vectors, is ∪πΞp(V,K, π).

When the enumeration mapping π is known in advance, the minimax rate for estimating

parameters in Ξ1(V,K, π) has the order O{(nV )−1K log(eV/K)} (Fan and Guan 2018).

Ignoring the logarithmic factor, the rate is the same as the best possible rate corresponding

to the case where the characteristic graph G0 is known. This result is not a surprise since

π encodes rich prior information of the distribution heterogeneity; it is much likely for the

devices whose indexes are adjacent in π to have the same target parameter.

In practice, unfortunately, a priori we neither know the characteristic graph nor the

mapping π. A natural question is whether there exist algorithms that can adapt to the
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adjacency structure of G0. The following proposition gives a negative answer that adaptation

is impossible when we only know the number of cliques in G0.

Proposition 1. Suppose that on the device u we observe z
(u)
1 , . . . , z

(u)
n independently from

the Gaussian distribution N(θ∗u, σ
2) for all u. Then for K ≥ 3 and V ≥ 5, there exists some

universal constant κ > 0 such that

inf
θ̂u,u∈V

sup
θ∗∈∪πΞ1(V,K,π)

1

V
E
∑
u∈V

(
θ̂u − θ∗u

)2 ≥ κ
σ2

n
, (2)

where θ∗ = (θ∗1, . . . , θ
∗
V )

T and the infinum is taken over all measurable functions of {z(u)i }u,i.

The risk bound O(σ2/n) is achieved by the local sample mean (1/n)
∑n

i=1(z
(1)
i , . . . , z

(V )
i )T ,

indicating that the lower bound is sharp in the minimax sense. It also reveals that any

estimator will be no significantly better than the local estimator, and thus adaptation is

impossible unless additional knowledge of G0 is provided.

In this work, we postulate the existence of an alternative graph, denoted by G, serving

as a surrogate for the characteristic graph G0. Specifically, the underlying assumption is

that edges in G are expected to be found in G0, albeit with potential discrepancies. This

setup includes the case where the enumeration mapping π is known. To illustrate, a given

π corresponds to a graph Gπ = (V , Eπ), where (i, j) ∈ Eπ if and only if |π(i) − π(j)| = 1.

By construction, Gπ forms a linear chain comprising |Eπ| = V − 1 edges, and the target

parameters remain piecewise constant with K(G0) pieces along this chain. Most edges in

Gπ also exist in G0, save for K(G0) − 1 edges which connect devices belonging to disparate

pieces. Indeed, it is important to highlight that G can be an arbitrary graph, provided it

retains some knowledge relevant to G0. In subsequent sections, we delve into leveraging the

prior information in G for enhanced parameter estimation.

10



3 Methodology

If there is no heterogeneity, we can aggregate all available samples to estimate a common

parameter for all devices, which is referred to as the global estimator,

θ̂gl = argmin
θ∈∩uΞu

∑
u∈V

M̂u(θ), (3)

where M̂u(θ) = n−1
∑n

k=1 mu(z
(u)
k ;θ) denotes the empirical risk function on device u. In

the presence of heterogeneity, however, the global estimator is inconsistent. A conservative

approach for estimating the target parameter on the device u is to exclusively use its own

samples, which we term the local estimator,

θ̂locu = argmin
θ∈Ξu

M̂u(θ), u ∈ V . (4)

Although the local estimator is asymptotic normal under regularity conditions, it fails to use

additional identically distributed samples stored on other devices. This oversight could lead

to a significant loss in statistical power (Wolfson et al. 2010; Dobriban and Sheng 2021).

In this paper, it is posited that devices connected in G are likely to share the same target

parameter. To leverage this prior knowledge, we introduce a network-fusion penalty, designed

to produce closer estimates for connected devices. Specifically, we propose a network-fusion

penalized M -estimator defined by

Θ̂ = argmin
Θ=(θ1,...,θV )T

Fλ(Θ) ≡
∑
u∈V

M̂u(θu) + λR(DΘ), (5)

where DΘ = (θe+ − θe− : e ∈ E)T ∈ RE×p, R(DΘ) =
∑

e∈E ϕ(θe+ − θe−) with ϕ(·) being

a norm on Rp such as ∥ · ∥2, and λ is a tuning parameter. The objective function Fλ(Θ)

consists of two terms, the data fidelity term
∑

u∈V M̂u(θu) that estimates target parameters

per device, and the regularization term λR(DΘ) that drives the discrepancy between θe+

and θe− towards zero for all e ∈ E .

Notably, the value of λ reflects the extent to which we trust the prior information en-

capsulated in G. When λ = 0, the surrogate graph G has no impact. In this case, since
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the data fidelity term is separable across u, our proposed estimator coincides with the local

estimator in (4). Conversely, for a sufficiently large λ, the regularization term essentially

imposes a constrain θ∗i = θ∗j for all (i, j) ∈ E . In particular, when G is connected and λ is

large enough, our proposed estimator will behave similarly to the global estimator in (3).

The performance of the network fusion penalized estimator relies crucially on the choice of λ.

We will provide a general statistical convergence guarantee of Θ̂ so that the optimal scaling

of λ can be determined.

Subsequently, we operate under a regularity assumption that mu(z;θ) is twice differen-

tiable with respect to θ almost surely under the probability measure Pu for all u. We write

the score function for the device u as ψu(z;θ) = ∇θmu(z;θ) and the empirical Hessian

matrix as Ĥu(θ).

3.1 Theoretical Properties

Owing to the rank deficiency of the incidence matrix D, the network-fusion penalized esti-

mator Θ̂ suffers from non-uniqueness issues. Specifically, given estimators θ̂i and θ̂j for any

(i, j) ∈ E∩E0, there may exist a common shift in both estimators without changing the value

of the objective function. To rule out this situation, we directly posit the strong convexity

of empirical risk functions.

Condition 2. For some constant κ ≥ 1, we have

κ−1 ≤ min
u∈V

inf
θ∈Ξu

λmin

{
Ĥu(θ)

}
≤ max

u∈V
sup
θ∈Ξu

λmax

{
Ĥu(θ)

}
≤ κ.

Condition 2 frequently appears in studies on the convergence of algorithms, particularly

in the context of federated learning (Stich 2019; Li et al. 2020). In our statistical analysis,

since the dimension p of target parameters is fixed, this requirement can be easily satisfied;

under mild conditions on Pu, we show in Lemma S.1 that Condition 2 holds with high

probability.

Another aspect that complicates the provision of statistical guarantees for Θ̂ is the issue

of high-dimensionality; that is, the number of edges in G is much larger than the local sample
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size n. In fact, our proposed method in (5) bears some resemblance to the high-dimensional

M -estimation penalized by the group Lasso. For better illustration, suppose that ϕ(·) = ∥·∥2

and mu(z
(u);θu) = ∥z(u) − θu∥22 for all u. If we further assume that D has a left inverse D†

so that D†D = IV , then our proposed estimator Θ̂ has the representation Θ̂ = D†∆̂, where

∆̂ ≡ argmin
∆=DΘ:Θ∈RV ×p

1

n

∑
u∈V

n∑
k=1

∥z(u)k − (D†∆)u,:∥22 + λ
∑
e∈E

∥∆e,:∥2 (6)

and Ai,: denotes the ith row of the matrix A. The estimator ∆̂ is exactly an M -estimator

penalized by the group Lasso, where the number of edges in G is the number of groups and

D† serves as the design matrix at each group. In high-dimensional settings, some regularity

condition of the design matrix is required for parameter identification, for example, the

compatibility condition (Bühlmann and Van De Geer 2011). Motivated by the reformulation

(6), in our case a similar regularity condition is imposed on D. We first define the set of

restrictions by C(T , L) = {∆ : R(∆T c,:) ≤ LR(∆T ,:) ̸= 0} for some positive constant L.

Condition 3 (Compatibility factor). The compatibility factor of D for the set S = E \ E0

with respect to R(·) is bounded from below; that is, κS(D) ≥ κ0, where κ0 is a positive

constant,

κS(D) = inf
Θ:DΘ∈C(S,3)

√
|S|∥Θ∥F

R
(
(DΘ)S,:

) ,
and (DΘ)S,: denotes the submatrix of DΘ with rows indexed by S.

It is worth noting that in general

inf
Θ:DΘ∈C(S,3)

√
|S|∥Θ∥F

R[(DΘ)S,:]
≥ inf

∆∈C(S,3)

√
|S|∥D†∆∥F
R(∆S,:)

,

and thus Condition 3 is slightly weaker than the compatibility condition for the group Lasso

problem (6). Our definition of the compatibility factor is a generalization of the notion

defined in Hütter and Rigollet (2016) which is specifically designed for p = 1 and ϕ(·) = ∥·∥1

and take the infimum over all Θ ∈ RV . Moreover, it directly follows from Lemma 3 of

Hütter and Rigollet (2016) that κS(D) ≥ 1/(2
√
d), where d denotes the maximum degree

of G. Therefore, for graphs with a bounded maximal degree, Condition 3 is satisfied. We
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assert a deterministic statement about the regularized estimator Θ̂ that is applicable for any

distributions {Pu}u and surrogate graph G, provided the previously mentioned conditions

are satisfied. For convenience, let Ψ̂(Θ) =
(
∇θ1M̂1(θ1), . . . ,∇θV M̂V (θV )

)T and R∗(·) the

dual norm of R(·) defined in Lemma S.4. Let Ker(D) = {u ∈ RV : Du = 0E} be the kernel

space of D. We also denote by ΠKer(D) the projection matrix that maps vectors in RV to

the kernel space of D. Define S = |E \ E0| and ρ = ∥ΠKer(D)Ψ̂(Θ∗)∥F .

Theorem 2. Under the Conditions 1–3, the network-fusion penalized estimator with λ =

2R∗{(D†)T Ψ̂(Θ∗)
}

satisfies that∥∥Θ̂−Θ∗∥∥
F
≤ κ

(
ρ+

2
√
S

κ0

λ

)
. (7)

Our deterministic bound includes two components, ρ2 and Sλ2/κ0, which separately

controls the error for estimating ΠKer(D)Θ
∗ and (IV −ΠKer(D))Θ

∗. To see this, by Theorem

8.3.1 of Godsil and Royle (2001) we have Ker(D) = span{1C1 , . . . , 1CK(G)
}, where 1Ci =(

I(1 ∈ Ci), . . . , I(V ∈ Ci)
)T is the indicator vector of Ci. Thus, ρ2 can be construed as

the averaged intra-group variances for estimating rows of ΠKer(D)Θ
∗; that is, |Ci|−11TCiΘ

∗,

i = 1, . . . , K(G). Furthermore, by (6), our network-fusion regularization mirrors the group

Lasso in estimating (IV − ΠKer(D))Θ
∗. As expected, the rate structure of Sλ2/κ0 bears a

strong resemblance to that of conventional Lasso estimators.

In order to elucidate the relationship between the estimation error and factors such as

the local sample size n, the graph size V , and the graph structure G, we need an additional

condition on distributions {Pu}u that enables us to derive an explicit representation for ρ

and λ.

Condition 4. The random vector ψu(z(u)k ;θ∗u) is sub-Gaussian with parameter σ2 <∞ for

all u; that is, for any a ∈ Rp with ∥a∥2 = 1,

E exp
[{

aTψu(z
(u)
k ;θ∗u)

}2
/σ2
]
≤ 2, k = 1, . . . , n.

14



Condition 4 imposes a sub-Gaussian tail on the distribution of noises for technical con-

venience, which can be relaxed to distributions of high-order moments. Equipped with this

condition, we derive the risk bound for Θ̂ explicitly depending on n, V , and graph invariants.

Theorem 3. Under Conditions 1–4, if we choose ϕ(·) = ∥ · ∥1 or ϕ(·) = ∥ · ∥2, then with

probability at least 1− 2ξ we have

1

V
∥Θ̂−Θ∗∥2F ≤ Cσ2

{
pK(G) log(1/ξ)

nV
+

γ2
G

κ2
0

pS log(V/ξ)

nV

}
for some positive constant C, where γG is the maximum Euclidean norm among all columns

of D†.

The term γ2
G appears when we explicitly bound λ. This quantity, which is invariant under

graph isomorphisms, measures the effectiveness of communication between nodes within the

graph. When G is connected, γ2
G is bounded by the inverse of algebraic connectivity of G,

which signifies the robustness and synchronizability of the graph (Wu et al. 2011). Notably,

for a multitude of graph types, the magnitude of γ2
G/κ0 does not grow as the graph size

V tends to infinity. For example, Proposition 6 of Hütter and Rigollet (2016) stipulates

that γ2
G/κ0 = O(1) for 3-D lattice graphs, as well as their higher-dimensional counterparts.

This constant bound also holds for expander graphs with a bounded degree as evidenced by

Proposition 1.82 and Corollary 1.87 in Krebs and Shaheen (2011).

Considering γ2
G/κ0 as a constant that does not depend on n and V , the convergence rate

of our estimator is of order OP

[
σ2p{K(G) + S}(log V )/(nV )

]
. Interestingly, lower values of

K(G), corresponding to a higher degree of aggregation, are usually associated with higher

values of S. This is because additional edges, absent from G0, might be incorporated into

G to achieve a smaller K(G), demonstrating the inherent trade-off between aggregation and

heterogeneity.

In cases where the characteristic graph G0 is known, the optimal estimator converges

at the rate of OP{σ2pK(G0)/(nV )}. To assess how well G serves as a surrogate for G0, we
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introduce the concept of graph fidelity, which is defined by contrasting two rates,

GFG0(G) ≡
K(G0)

K(G) + |E \ E0|
.

As the graph size increases, surrogate graphs with a non-vanishing graph fidelity will yield

a network-fusion regularized estimator whose convergence rate matches the order of the

optimal estimator, except for a logarithmic prefactor. This implies that, as V/K(G0) becomes

larger, our method has the capability to handle a large number of heterogeneous devices

simultaneously.

3.2 Edge Selection by Multiple Testing

In this section, our aim is to optimally utilize the prior information encapsulated in G.

Specifically, we propose identifying a subgraph of G that maintains the greatest graph fidelity,

Ê = argmin
Ẽ⊂E

{
K(G̃) + |Ẽ \ E0|

}
, (8)

where any subgraph of G is denoted as G̃ = (V , Ẽ). Since the upper bound of the convergence

rate in Theorem 3 is minimized, Ĝ = (V , Ê) represents the graph yielding the best network-

fusion regularized estimator based on G. When G contains multiple connected components,

the objective function in (8) is separable according to these components. Without loss of

generality, we assume that G is connected such that K(G) = 1. The following proposition

shows the connection between problem (8) and the selection of true edges.

Proposition 4. For any graph G = (V , E) with K(G) = 1, we have minẼ⊂E
{
K(G̃)+|Ẽ\E0|

}
=

K(G ∩ G0), where G ∩ G0 = (V, E ∩ E0).

Proposition 4 suggests that E ∩ E0 is one of the solutions for (8). By Definition 1,

(i, j) ∈ E0 is equivalent to θ∗i = θ∗j . This leads us to perform a simultaneous test of the

following hypotheses

H0,e : θ
∗
e+ = θ∗e− versus H1,e : θ

∗
e+ ̸= θ∗e− (9)

for all e ∈ E . We impose Condition 5 for technical convenience.
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Condition 5. There exist positive definite matrices Ω̂u such that
√
nΩ̂

−1/2
u (θ̂locu − θ∗u) →d

N(0p, Ip) for all u.

As demonstrated in Proposition S.3, under additional regularity conditions on mu(z; ·)

and Pu, Condition 5 is satisfied with Ω̂u = {Ĥu(θ̂
loc
u )}−1Σ̂u(θ̂

loc
u ){Ĥu(θ̂

loc
u )}−T , where Σ̂u(θ) =

n−1
∑

iψu(z
(u)
i ;θ){ψu(z(u)i ;θ)}T and Ĥu(θ) = n−1

∑
i∇θψu(θ). Thus, for θ∗e+ = θ∗e− , we

can construct a test statistic by

Ŵe =
{
n
(
θ̂loce+ − θ̂loce−

)T (
Ω̂e+ + Ω̂e−

)−1(
θ̂loce+ − θ̂loce−

)}1/2
. (10)

Adopting the Bonferroni correction, we select E ∩ E0 by

Ê =
{
e ∈ E : |Ŵe|2 ≤ χ2

p(α/E)
}
, (11)

where χ2
p(α) is the upper α-quantile of the χ2

p distribution. For θ∗e+ ̸= θ∗e− , to adaptively

measure the distance between them, define the distance dist(θ1,θ2) =
{(
θ1 − θ2

)T (
Ω∗
e+ +

Ω∗
e−

)−1(
θ1 − θ2

)}1/2, where Ω∗
u is the probabilistic limit of Ω̂∗

u for all u. Under certain

minimum signal condition, we show that our procedure can consistently select edges in E0

with a large probability.

Theorem 5. Under Condition 5, if further

min
e∈E\E0

n
{
dist(θ∗e+ ,θ

∗
e−)
}2 ≥ 4χ2

p(α/E), (12)

then lim infn→∞ P
(
Ê = E ∩ E0

)
≥ 1− α.

Theorem 5 illustrates the effectiveness of our selection procedure (11), which incurs nei-

ther false negatives nor false positives with a confidence level of 1 − α. Intriguingly, this

procedure operates without the need for inter-device data exchange.

Although this edge selection procedure aims at selecting edges in G0, our findings from (8)

and Proposition 4 reveal an interesting point: the graph that optimizes the convergence rate

is not necessarily G0. In fact, any graph G = (V , E), provided it satisfies K(E ∩E0) = K(G0),

can serve this purpose. Meanwhile, to ensure that γ2
G/κ0 remains a bounded constant after
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edge selection, we can designate G as any expander graph. This underlines the robustness

of our method against graph misspecification.

Nonetheless, (11) is known to be conservative for controlling the false positive rate (FPR)

(Benjamini and Hochberg 1995). Despite that we have obtained the asymptotic distribution

of the test statistic in (10), controlling the FPR in our edge selection procedure presents a

challenge due to dependencies of those test statistics. We recognize this issue as an area ripe

for future exploration.

4 Optimization

In this section, we turn our attention to the derivation of the network-fusion regularized

estimator. We introduce FedADMM, a decentralized, stochastic version of ADMM, designed

to solve the optimization problem described by (5). Unlike traditional methods, FedADMM

utilizes only a mini-batch of samples in each iteration per device, and does not require

the transmission of local data. Moreover, this algorithm allows for heterogeneous device

availability patterns. For simplicity, we assume that edges in G point from larger nodes to

smaller ones, meaning that (i, j) ∈ E implies i > j. We denote the neighbors of node i as

Ni = {j : (i, j) ∈ E} ∪ {j : (j, i) ∈ E}.

4.1 FedADMM

We first consider the case where all devices are available instantaneously. Similar to Hallac,

Leskovec, and Boyd (2015), we introduce auxiliary vectors βij,βji subject to the constraints

βij = θi,βji = θj for all (i, j) ∈ E . The resulting augmented Lagrangian (Hestenes 1969) is

given by

L(Θ,B,A) =
1

V

∑
i∈V

M̂i(θi) + λ
∑

(i,j)∈E

ϕ(βij − βji) (13)

−
∑

(i,j)∈E

{
αTij(θi − βij) +αTji(θj − βji)

}
+

ρ

2

∑
(i,j)∈E

(∥θi − βij∥22 + ∥θj − βji∥22),
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where B = (βij,βji : (i, j) ∈ E) and A = (αij,αji : (i, j) ∈ E). ADMM typically solves

(13) by iteratively minimizing L(Θ,B,A) with respect to Θ and B, while keeping the other

fixed, followed by an update of the Lagrangian multiplier A. Importantly, L(Θ,B,A) is

separable, which allows for the distributed execution of updates for Θ,B, and A.

In practical settings, local devices often lack the computational resources to optimize

with the full dataset. Drawing inspiration from stochastic gradient descent, we modify the

approach to optimize L(Θ,B(t),A(t)) with respect to θi on device i. Rather than direct

minimization, we implement a one-step stochastic gradient update during the t-th iteration:

θi(t+ 1) = θi(t)− η(t)
{
gi(t) + ρ

∑
j∈Ni

(
θi(t)− βij(t)− ρ−1αij(t)

)}
, (14)

where η(t) is the learning rate, Bi(t) represents a mini-batch randomly drawn from {z(i)k }
ni
k=1

on device i in the t-th iteration, and gi(t) = |Bi(t)|−1
∑

b∈Bi(t)
ψi(z

(i)
b ;θi(t)) is an unbiased

estimator of ∇θM̂i(θ) at θi(t). Besides local samples, the update equation (14) only requires

βij(t) and αij(t), both of which can be sourced from device j. This enables the simultaneous

execution of (14) on all devices.

With θi(t+ 1) updated, we proceed to update βij(t) and βji(t) using(
βij(t+ 1)

βji(t+ 1)

)
= argmin

βij ,βji

{
λϕ(βij − βji) +

ρ

2
∥θi(t+ 1)− βij − ρ−1αij(t)∥22 (15)

+
ρ

2
∥θj(t+ 1)− βji − ρ−1αji(t)∥22

}
.

Either device i or j can implement (15), as long as the necessary parameters are transmitted

to the correct device. It is worth noting that, for ϕ(·) = ∥ · ∥1 and ϕ(·) = ∥ · ∥2, we derive an

explicit update equation from (15) in Lemma S.11 in Supplementary Materials. Finally, we

update αij(t) and αji(t) with(
αij(t+ 1)

αji(t+ 1)

)
=

(
αij(t)

αji(t)

)
− ρ

(
θi(t+ 1)− βij(t+ 1)

θj(t+ 1)− βji(t+ 1)

)
. (16)
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Note that update equation (16) , like the previous update equation, only requires parameter

exchange among connected devices. Both (15) and (16) can be performed in parallel across

all edges. We refer to (14) as the node optimization step, and (15) and (16) as the edge

communication step. FedADMM is detailed in Algorithm 1.

Algorithm 1: Decentralized stochastic ADMM
Input: Initial value Θ(0),B(0),A(0), number of iterations T , and the learning rate

η(t), t = 1, . . . , T .
repeat

Sample mini-batches Bi(t) on device i in parallel;
Obtain θi(t+ 1) on device i by (14) in parallel for each i ∈ V ;
Broadcast each θi(t+ 1) to neighbor devices;
Obtain βij(t+ 1) and βji(t+ 1) on device i by (15) in parallel for (i, j) ∈ E ;
Obtain αij(t+ 1) and αji(t+ 1) on device i by (16) in parallel for (i, j) ∈ E ;
Broadcast (βij(t+ 1),βji(t+ 1)) and (αij(t+ 1),αji(t+ 1)) from device i to
device j in parallel for (i, j) ∈ E ;

t← t+ 1
until t > T ;
Output: Θ = T−1

∑T
t=1 Θ(t− 1)

Our algorithm bears similarity to methods developed in Ouyang et al. (2013) and Suzuki

(2013). They approximated mi(·;θi) with a linear function mi(·;θi(t))+(θ−θi(t))Tψi(·;θi(t)),

and used the proximal method (Rockafellar 1976) to update θi(t),

θi(t+ 1) = argmin
θ∈Ξi

{
θTgi(t) +

ρ

2

∑
j∈Ni

∥θ − βij(t)− ρ−1αij(t)∥22 +
∥θ − θi(t)∥22

2η̃(t)

}
, (17)

where η̃(t) is the step-size. It is worth noting that our update equation for θ offering an

extension of (17) with the learning rate that adapts to the size of the neighboring nodes.

Specifically, by setting η(t) = η̃(t)/(1 + ρ|Ni|η̃(t)), one can verify that (17) is equivalent to

(14).

In the sequel, we show that the output of Algorithm (1) converges to the global minimizer

of (13). Let
{
θi(t),βij(t),βji(t),αij(t),αji(t) : i, j ∈ V

}
be the output of Algorithm 1 in

the t-th iteration for t = 0, . . . , T . Denote by
{
θ̂i, β̂ij, β̂ji, α̂ij, α̂ji : i, j ∈ V

}
the global

minimizer of (13). Define the ball Ξ = B(0p; r0) for some constant r0 such that {θ∗u}u ⊂

Ξ ⊂ ∩uΞu. Without loss of generality, we assume that
{
θ̂i, β̂ij, β̂ji,θi(t),βij(t),βji(t) :
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i, j ∈ V , 0 ≤ t ≤ T
}
⊂ Ξ, since we can always project them into Ξ. For simplicity, let

Cψ = maxu∈V supθ∈Ξ n−1
∑n

k=1 ∥ψu(z
(u)
k ;θ)∥22 and κα = maxi∈V,j∈Ni

(∥αij(0)∥22 + ∥α̂ij∥22).

Theorem 6. Under Conditions 1 and 2, if κα ≥ λ supa ̸=0 ϕ(a)∥a∥−1
2 and Cψ <∞, then by

choosing the learning rate as η(t) = κ/t we have

1

V
E∥Θ− Θ̂∥2F ≤

2κ2Cψ log T

T
,

for sufficiently large T such that κCψV log T ≥ E(8ρ−1κα + 2r20ρ+ 4r0κα), where the expec-

tation is taken with respect to the choice of mini-batches {Bu(t) : u ∈ V , t = 1, . . . , T}.

The conditions on κα and Cψ are not restrictive. Noting that the optimal λ decreases

to zero as n or V grows, but supa ̸=0 ϕ(a)∥a∥−1
2 does not, a large initial α ensures that

κα > λ supa ̸=0 ϕ(a)∥a∥−1
2 . Additionally, Cψ < ∞ is satisfied when n−1

∑
k ∥ψu(z

(u)
k ;θ)∥22 is

continuous with respect to θ. Our result shows that for T > O{nV/(pK(G) + pS)}, the

optimization error introduced by the algorithm becomes less significant than the inherent

statistical error.

4.2 Extension of FedADMM to Heterogeneous Accessibility of Devices

In this subsection, we explore a scenario where devices might become inaccessible; that is,

they may go offline or become unavailable during the real-time optimization process. For

each device i ∈ V and iteration t ∈ N, let Ri(t) = I(device i is available in the iteration t).

We denote the set of available devices in the t-th iteration as S(t) = {i : Ri(t) = 1}.

The inaccessibility of devices is modeled as a random variable Ri(t) from the Bernoulli

distribution with mean pi. Furthermore, we assume that the process Ri(t), t > 0 holds the

memoryless property; that is, {Ri(t1) : i ∈ V} is independent of {Ri(t2) : i ∈ V} for any

t1 ̸= t2. We also consider scenarios where the probability of inaccessibility varies among

devices; that is, pi ̸= pj for i ̸= j. We allow for dependencies among {Ri(t) : i ∈ V} for a

fixed t. Finally, we assume the positivity condition p0 ≡ mini∈V pi > 0.
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To begin with, we presume the existence of a central server O and knowledge of pi, i ∈

V . Drawing on the inverse probability weighting method (Wooldridge 2007) from causal

inference literature, an unbiased estimator of ∇θiM̂i(θi(t)) is given by

g̃i(t) =
1

|Bi(t)|
∑
b∈Bi(t)

Ri(t)

pi
ψi(z

(i)
b ;θi(t)). (18)

Therefore, we modify (14) as

θi(t+ 1) = θi(t)− η(t)

{
g̃i(t) + ρ

∑
j∈Ni

(θi(t)− βij(t)− ρ−1αij(t))

}
. (19)

If device i is accessible during the iteration t, we need to send θi(t) from O to device i. We

then calculate g̃i(t) on device i and send g̃i(t) back to O to update θi(t + 1). If the device

is not accessible, by (18) we directly set g̃i(t) = 0p in (19). Once θi(t + 1) (for i ∈ V) has

been updated, we can calculate
(
βij(t+1),βji(t+1)

)
using (15), and

(
αij(t+1),αji(t+1)

)
using (16) on O.

It should be noted that the presence of a central server is optional, as each device can

maintain a copy of the parameters from other devices. Specifically, during the t-th iteration,

if device i cannot receive θj(t+ 1) from a neighboring device (for instance, device j), device

i can retrieve θj(t+1) using equation (19) with g̃i(t) = 0p. This is possible provided device

i has kept a record of αjk(t) and βjk(t) for all k ∈ Nj. Although this method increases the

communication cost, it is still practical. Additionally, it is essentially unnecessary to know

(p1, . . . , pV )
T a priori. In the t-th iteration, the vector (p1, . . . , pV )T can be estimated by the

frequency of each device being offline over the first t−1 iterations. The FedADMM approach

with randomly inaccessible devices is outlined in Algorithm 2. For simplicity, we maintain

the central server in this algorithm.

Similar to Theorem 6, we obtain the convergence rate of Algorithm 2 in Supplementary

materials.
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Algorithm 2: FedADMM with randomly inaccessible devices
Input : Initial value Θ(0),β(0),α(0), number of iterations T , and the learning

rate η(t), t = 1, . . . , T, i ∈ V .
repeat

for i ∈ S(t) do
Broadcast θi(t) from O to device i ;
Obtain g̃i(t) by (18) with pi = pi(t) in parallel and send g̃i(t) back to O;

Obtain θi(t+ 1) by (19) in O;
Obtain βij(t+ 1) and βji(t+ 1) by (15) for (i, j) ∈ E in O;
Obtain αij(t+ 1) and αji(t+ 1) by (16) for (i, j) ∈ E in O;
If (p1, . . . , pV )T is unknown, record (Ri(t) : i ∈ V) and update
pi(t+ 1) = t−1

∑t
t=1 Ri(t), i ∈ V ;

t← t+ 1;
until t > T ;
Output: Θ = T−1

∑T
t=1 Θ(t− 1)

Corollary 7. Under the same conditions of Theorem 6, if (p1, . . . , pV )T is known and p0 =

mini∈V pi > 0, then the output of Algorithm 2 satisfies that

1

V
E∥Θ− Θ̂∥2F ≤

2κ2Cψ log T

p0T
,

for sufficiently large T , where the expectation is taken with respect to the choice of mini-

batches {Bu(t) : u ∈ V , t = 1, . . . , T}.

5 Simulations

In this section, we evaluate the performance of six methods in various settings: FedADMM,

FedADMM-ES, FedADMM-Local-ES, Oracle, Local, and Global. For a surrogate graph

G = (V , E), FedADMM, FedADMM-ES, and FedADMM-Local-ES represent the outputs of

Algorithm 1 with G, after applying the adaptive edge selection procedure to G, and after

applying the adaptive edge selection procedure to the complete graph respectively. Oracle

represents the output of Algorithm 1 with the characteristic graph G0. Meanwhile, Local

and Global correspond to the local estimator and the global estimator defined in (4) and

(3), respectively. The performance metric is chosen as the average squared estimation error

∥Θ̂−Θ∗∥2F/V . Additionally, we compare the convergence rates of FedADMM and gradient-
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descent-based methods in solving the objective function (5) in terms of the total number of

iterations required for convergence.

We introduce the data generating process of our simulation. We consider linear regression

tasks on each device, where covariates x
(u)
k ∼ Np(0, Ip) and noise variables ε

(u)
k ∼ N(0, 1)

are generated independently for k = 1, . . . , n; u ∈ V . The characteristic graph G0 is created

by partitioning V into K0 evenly-sized subsets, V1, . . . ,VK0 , with each set Vj forming a

complete subgraph. We then store the adjacency matrix Λ0 of G0. For each subset Vj and

node u ∈ Vj, we generate responses as y(u)k =
(
x
(u)
k

)T
ϑ(j)+ε

(u)
k . The vectors ϑ(j) are sampled

independently from a Gaussian distribution with mean 0p and covariance matrix p−1/2Ip.
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Figure 2: Average estimation error of FedADMM, FedADMM-ES and oracle, local and global
estimators in linear regression, with randomly corrupted graphs. The number of clusters K
is fixed to be 5 for all settings. The two rows correspond to corruption level ϱ = 0.1 and 0.2.

We generate G = (V , E) by corrupting G0 at a specified corruption level ϱ > 0. This

corruption involves randomly flipping the connection status between devices i and j in G0,

guided by independent Bernoulli random variables eij with mean ϱ. In other words, if eij = 1,

we invert the connection status; otherwise, we leave it as it is. More specifically, we define the

(i, j)th entry of the adjacency matrix by Λij(ϱ) = Λji(ϱ) = eij{1− (Λ0)ij}+(1− eij)(Λ0)ij.
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This applies to all i, j ∈ V with i < j. We then define G as the graph corresponding to

Λ(ϱ). The degree of deviation between G and G0 can be modulated by different choices of

ϱ. In fact, |E \ E0| + |E0 \ E| =
∑

i<j eij = ϱV (V − 1)/2 + OP (ϱV log V ), as confirmed by

Hoeffding’s inequality.

For estimation, we choose mu(z
(u)
k ;θ) =

(
y
(u)
k − θTx

(u)
k

)2
/2 and ϕ(·) = ∥ · ∥1 in (5). The

regularization parameter λ is tuned by 5-fold cross-validation.

5.1 Estimation Error

We evaluate the average estimation error across various estimators, selecting V values from

the set 20, 40, 60, 80, 100, n values from 50, 100, 200, with K = 5 and p = 20. We use

corruption levels ϱ = 0.1 and ϱ = 0.2 for comparison.

Figure 2 illustrates the average squared estimation error for each estimator. The first

and second rows correspond to corruption levels ϱ = 0.1 and ϱ = 0.2 respectively, with each

data point representing the mean of 100 independent replications. In all settings, Local and

Global performance does not vary with V , whereas the estimation error of Oracle decreases as

V increases. With ϱ = 0.1, FedADMM outperforms local estimators, demonstrating the ad-

vantages of data federation. Nevertheless, a persistent performance gap between FedADMM

and Oracle exists. Importantly, the average error of FedADMM does not diminish with an

increase in V . As per Theorem 3, this occurs because as V grows, the expected number

of incorrect edges increases due to the constant corruption level ϱ. The performance of

FedADMM even falls below that of the local estimator with higher corruption, as shown in

the second row of Figure 2.

Remarkably, edge selection effectively mitigates this issue. In all configurations, FedADMM-

ES (FedADMM with edge selection) surpasses both FedADMM and the local estimator, with

its performance nearing Oracle’s when n is large. This implies that our edge selection process,

detailed in Section 3.2, effectively eradicates most misleading information in the graph.
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Figure 3: Average estimation error of FedADMM, FedADMM-ES, FedADMM-Local-ES,
Oracle, Local and Global in linear regression, with randomly corrupted graphs. The x-axis
corresponds to the corruption lever ϱ. We fix K = 5. The two rows correspond to n = 50
and 100.

5.2 Sensitivity Analysis of Graphs

We conduct an additional study to better understand the degradation in performance of

FedADMM as ϱ increases. We vary ϱ from 0 to 0.9 in increments of 0.1 and compare the

averaged estimation errors for FedADMM, FedADMM-ES, and FedADMM-Local-ES. We

set K = 5, V = 40, 60, 80 and n = 50, 100. The results are displayed in Figure 3, with each

data point reflecting the summary of 100 independent replications.

The average estimation error of the FedADMM increases rapidly with ϱ, exceeding that

of the local estimator when ϱ ≥ 0.2. In contrast, FedADMM-ES exhibits superior robust-

ness, outperforming the local estimator even when the adjacency matrix is almost entirely

misleading (i.e., ϱ = 0.9). Notably, FedADMM-ES performs better than FedADMM-Local-

ES when ϱ is small, indicating that it benefits from accurate graph information, which is

26



encapsulated by G. However, the performance of FedADMM-Local-ES is not affected by ϱ,

demonstrating its resistance to misleading graph information.

5.3 Algorithmic Convergence Rates

In this section, we investigate the algorithmic convergence rates of FedADMM and its variant,

comparing them with both vanilla gradient descent (GD) and stochastic gradient descent

(SGD). The latter two methods have convergence rates proportional to 1/
√
T in a convex

but nonsmooth setting, where T is the number of iterations. For our experiments, we set

K = 5, p = 20, and varied n over 50, 100 and V over 40, 60, 80. We ran FedADMM with a

full batch, FedADMM with a batch size of 10, and both GD and SGD also with a batch size

of 10. Figure 4 presents the results, with the x-axis representing the number of optimization

iterations and the y-axis the average estimation error. In all configurations, FedADMM

converged significantly faster than both GD and SGD.
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Figure 4: Learning curves of the FedADMM with full batch, FedADMM with batch size 10,
GD and SGD with batch size 10. We set K = 5, p = 20, n = 50, 100 and V = 40, 60, 80.
The x-axis and y-axis correspond to optimization iteration and average estimation error
respectively.

27



6 A Real-Data Study

The significance of the 2020 US presidential election prompted us to apply our proposed

method to examine its results. County-level election data were obtained from two publicly

available sources, one providing election results that can be found in https://github.com/

tonmcg/US_County_Level_Election_Results_08-20 and the other offering county-level in-

formation that can be found in https://www.kaggle.com/benhamner/2016-us-election.

This dataset encompassed 51 states, 3111 counties, and 52 county-level predictors.

We conceptualized each state as a device, with its counties acting as samples. The

county-level information served as predictors, while the election result for each county was

used as responses, encoded as 1 if Democrats won, and 0 otherwise. Logistic regression was

then employed to predict election results. Owing to the scarcity of data, we included only

states with more than 50 counties in our study, resulting in a total of 29 states.

The graph utilized in FedADMM was obtained through two distinct approaches: (a) using

historical election results up to 2016 to classify states, whose incidence matrix is denoted by

D̂his; and (b) using local estimators of states for edge selection, whose incidence matrix is

labeled D̂loc. The first approach classified states based on their traditional political leaning as

red (Republican), blue (Democratic), or swing states. The second approach relied solely on

current local estimates to perform the edge selection procedure (11) with the given surrogate

graph being a complete graph. Both local and global estimators were used as comparison

benchmarks.

We divided the data, selecting 2/3 of counties at random for training, and using the

remaining counties as a testing sample. The prediction accuracy was measured as the pro-

portion of correctly classified samples over all test samples. This process was repeated 50

times, and the mean and standard deviation of each model’s accuracies are presented in Table

1. As shown in Table 1, the best performance was achieved by FedADMM using D̂loc. The

global estimator outperformed the local one, implying that heterogeneity among the states

considered was not substantial. The performance of FedADMM with D̂his was comparable
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Table 1: Accuracy (mean(standard deviation)) of Local, Global, and FedADMM.

Methods Local Global FedADMM

D̂loc D̂his

Accuracy 0.741(0.034) 0.752(0.012) 0.793(0.019) 0.742(0.011)

to the local estimator, indicating that the heterogeneity did not principally stem from the

traditional political leaning of states.
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Figure 5: Clustering of states under FedADMM with D̂loc. Yellow and blue states represent
two main clusters. Gray indicates states that are not connected to other states. White states
are not considered.

In addition to prediction performance, we were also interested in the graph obtained by

edge selection, which represents the similarity between states in the 2020 presidential election.

The clustering result of the 29 states considered, derived using D̂loc in our proposed method,

is depicted in Fig 5. The graph consists of two connected components, i.e., two clusters.

Members of these clusters are marked in yellow and blue, respectively, in Figure 5. This

suggests that states within each cluster share similar electoral patterns. Some states, colored

in gray, are not connected to any others in the graph. This could indicate that the statistical
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associations between predictors and electoral results in these gray states may diverge from

the majority. As such, data from other states may offer little aid in predicting the results

for these gray states.

7 Discussion

This study focuses on parameter estimation across multiple devices under significant con-

straints. These constraints include the prohibition of data sharing, heterogeneity of data dis-

tribution, limited computational capacity, and unstable accessibility of local devices. Within

a broad M -estimation framework, we introduced a scalable and decentralized algorithm, and

we established the convergence rate of our estimator under the Frobenius norm.

To achieve rate-optimality for our estimator, we require the surrogate graph to closely

approximate the characteristic graph; that is, K(G) + |E \ E0| = O(K(G0)). While acquiring

this prior information can prove challenging, we demonstrate that without any adjacency

information of the characteristic graph, any estimator would perform no better than the

local estimator. This phenomenon, known as the impossibility of adaptation, also arises in

nonparametric multitask learning with covariate shifts (Hanneke and Kpotufe 2022). Our

research expands on this by taking into account the heterogeneity resulting from varying

target parameters. Despite these advancements, a comprehensive theory that simultaneously

addresses shifts in covariates and drifts in target parameters remains an intriguing direction

for future investigation.

While high-dimensional parameter estimation and inference are crucial, they have re-

ceived scant attention in the federated learning literature. Recent research (Battey et al.

2018; Fan, Guo, and Wang 2021; Cai, Liu, and Xia 2021) has explored high-dimensional

parameter estimation and inference in distributed settings without sharing local data. How-

ever, these approaches require the pre-computation of a local estimator from each device,

which demands significant computational capacity. Our method has the potential to circum-

vent this issue by extending to high-dimensional settings under all the constraints typical of
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federated learning. In specific, we can achieve this by adding an additional ℓ1-regularization

of each parameter in (5), but the statistical inference in this case remains an open question

for future research.
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