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Large neural networks have proved remarkably effective in modern deep
learning practice, even in the overparametrized regime where the number
of active parameters is much larger than the sample size. This contradicts
the classical perspective that a machine learning model must trade off bias
and variance for optimal generalization. To resolve this conflict, we present
a nonasymptotic generalization theory for two-layer neural networks with
ReLU activation function by incorporating scaled variation regularization.
Interestingly, the regularizer is equivalent to ridge regression from the angle
of gradient-based optimization, but plays a similar role to the group lasso
in controlling the model complexity. By exploiting this “ridge–lasso duality,”
we obtain new prediction bounds for all network widths, which reproduce the
double descent phenomenon. Moreover, the overparametrized minimum risk
is lower than the underparametrized minimum risk when the signal is strong,
and nearly attains the minimax optimal rate over a suitable class of functions.
By contrast, we show that overparametrized random feature models suffer
from the curse of dimensionality and thus are suboptimal.

1. Introduction. During the past decade, deep learning has demonstrated superiority
over traditional machine learning techniques for representation learning and prediction in
a wide variety of tasks, including object recognition in computer vision (He et al., 2016),
machine translation and text generation in natural language processing (Sutskever, Vinyals
and Le, 2014), general game playing (Schrittwieser et al., 2020), and disease diagnosis in
clinical research (Esteva et al., 2017). Many such successful applications build on large neural
networks that operate in the overparametrized regime, where the number of model parameters
is much larger than the number of training samples. For example, the AlexNet (Krizhevsky,
Sutskever and Hinton, 2012) involves 60 million parameters trained on 1.2 million images;
the model achieving state-of-the-art performance on the ImageNet dataset as of 2022 has
reached 2.1 billion parameters (Yu et al., 2022).

Theoretical insights into overparametrized neural networks have been obtained from the
optimization viewpoint (Arora, Cohen and Hazan, 2018; Soltanolkotabi, Javanmard and Lee,
2019), suggesting that overparametrization can speed up convergence or improve the opti-
mization landscape. The benefits of overparametrization to generalization in deep learning,
however, remain mysterious. Numerical evidence indicates that deep neural networks easily
fit random labels but still generalize well even without explicit regularization (Zhang et al.,
2021). These empirical findings deeply challenge the conventional wisdom that optimal gen-
eralization should be achieved by trading off bias (or approximation error) and variance (or
estimation error). The so-called “double descent” curve (Belkin et al., 2019) was proposed
and conjectured as a ubiquitous phenomenon for unifying the generalization behaviors of
machine learning models across the underparametrized and overparametrized regimes, but
so far has not been theoretically justified for realistic neural networks.
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While the notion of overparametrization is not new and has long been studied in high-
dimensional statistics (Wainwright, 2019), there are some fundamental differences between
the usual high-dimensional models and overparametrized deep learning models. In high-
dimensional problems, although the number of parameters can be large or even exponentially
growing, it is almost always assumed that certain parsimonious structures (e.g., sparsity and
low-rankness) exist and can be exploited. For example, recent work has shown that minimum
norm interpolators have near-optimal prediction risk and hence overfitting is not detrimental
in linear regression when the parameters are sparse or the design matrix is low-rank (Bartlett
et al., 2020; Muthukumar et al., 2020; Hastie et al., 2022; Chinot, Löffler and van de Geer,
2022). Such parsimony and the regularization for achieving it play two roles: (i) to control
the model complexity for balancing bias and variance, and (ii) to ensure model identifiabil-
ity so that prediction and estimation are essentially equivalent. These ideas, however, do not
readily extend to overparametrized neural networks, because: (i) sparsity-inducing regular-
ization is often not required in deep learning or not strong enough (e.g., in dropout) to bring
the dimensionality down to a level below the sample size (Srivastava et al., 2014); and (ii)
neural networks are intrinsically unidentifiable owing to weight space symmetry and many
other equivalent parametrizations (Goodfellow, Bengio and Courville, 2016, p. 277).

Neural networks are pure prediction algorithms in the sense of Efron (2020), which operate
in a nonparametric and nonparsimonious way. The nonparametric view of neural networks
was pioneered by Barron (1994), who derived risk bounds in terms of the network width for
complexity-regularized two-layer sigmoidal networks. For different function classes and the
now popular ReLU activation function, recent developments have shown that deep neural
networks can deliver fast and near-minimax rates of convergence and circumvent the curse
of dimensionality (Schmidt-Hieber, 2020; Hayakawa and Suzuki, 2020; Farrell, Liang and
Misra, 2021; Kohler and Langer, 2021). The architectural constraints imposed by this line
of work, however, require the networks to be sparse or of small size, restricting the number
of nonzero or active parameters to a smaller order than the sample size. Therefore, although
these results demonstrate the efficiency of deep architectures, they are still confined to the
underparametrized regime and do not go beyond the bias–variance trade-off.

Another line of work controls the model complexity of neural networks via norm-based
regularization and obtains complexity and risk bounds in terms of various norms of the esti-
mated network parameters. Neyshabur, Tomioka and Srebro (2015a) and Golowich, Rakhlin
and Shamir (2020), among others, considered group norm and matrix norm regularization
and derived size-independent bounds on the Rademacher complexity. However, as observed
empirically by Neyshabur et al. (2019), these complexity measures increase with the net-
work size and do not correlate with the test error. As a result, they may lead to vacuous
bounds for large networks and are not sufficient to explain the role of overparametrization.
Recognizing these gaps, Neyshabur et al. (2019) presented complexity bounds that empiri-
cally decrease with the network size and could potentially explain the benefits of large net-
works. Nevertheless, norm-based complexity measures implicitly depend on the network size
and the training process, which are difficult to analyze precisely and control tightly.

This paper contributes to the ongoing debate about the role of overparametrization in deep
learning by developing a nonasymptotic theory for two-layer neural networks across the un-
derparametrized and overparametrized regimes. Our theory is intended to be as transparent
as possible, relying on no sparsity assumptions and giving rise to sharp risk bounds in terms
of the sample size, dimensionality, and network width. Building on this theory, we aim to
gain insight into the following questions:

• How does the network perform in the overparametrized regime differently from in the
underparametrized regime?
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• How does the overparametrized minimum risk compare with the underparametrized mini-
mum risk and how far is it from optimal?

Specifically, suppose that we observe predictors xi ∈ Rd and responses yi ∈ R generated
from the nonparametric regression model

(1) yi = f∗(xi) + εi, i= 1, . . . , n,

where f∗ is an unknown function to be estimated and εi are random errors. Let σ(z) =
max(z,0) be the rectified linear unit (ReLU) activation function (Jarrett et al., 2009). We
consider a two-layer neural network with m hidden units, g(·;θ) : Rd →R, of the form

(2) g(x;θ) =

m∑
k=1

akσ(v
T
k x+ bk)

with parameters θ = (a1, . . . , am,vT
1 , . . . ,v

T
m, b1, . . . , bm)T . By appropriately restricting the

function class to which f∗ belongs, we do not include an intercept in the output. Assumptions
on f∗, xi, and εi are detailed in Section 2.3.

By incorporating a scaled variation regularizer to be defined in Section 2.2, our main result
(Theorem 5) shows that the prediction (or generalization) error of the regularized network
estimator g(·; θ̂) is of order

(3) ‖f∗‖2Sm−(d+3)/d + (σ2
ε + ‖f∗‖2S)min

(
md logn

n
,

√
d logn

n

)
,

where ‖f∗‖S is the S-norm of f∗ (Definition 1) and σ2
ε is the variance of εi. We emphasize

that this result holds for all m ≥ 1 and any global minimizer of the regularized empirical
risk. The prediction bound (3) consists of two terms: the first term represents the approxima-
tion error, which decreases with the network width m, while the second term represents the
estimation error, which increases with m up to some critical point m1 �

√
n/(d logn) and

thereafter stays constant. An intriguing consequence of this unusual trade-off is a double de-
scent risk curve, as shown in Figure 1. To answer our question regarding optimality, we find
the first valley or underparametrized minimum risk to be O((d logn/n)(d+3)/(2d+3)), which
occurs at m0 � (n/(d logn))d/(2d+3), by matching the approximation and estimation errors
in (3). While this rate is slightly better than that of the second or overparametrized minimum
risk, O(

√
d logn/n), the asymptotic comparison can be reversed in finite samples, as shown

in the right panel of Figure 1. When the signal-to-noise ratio ‖f∗‖2S/σ2
ε is large, the second

valley tends to be lower than the first; a precise condition is given in (16). We further prove
that the overparametrized minimum risk is nearly minimax rate-optimal over a suitable class
of functions (Theorem 6). By contrast, overparametrized random feature models suffer from
the curse of dimensionality and thus are suboptimal (Proposition 5). Overall, our results lend
theoretical support to the benefits of overparametrization in deep learning and shed light on
the currently debated double descent phenomenon.

Intuitively, the number of parameters or the network width m is not an appropriate measure
of model complexity for the network (2) in the overparametrized regime, and one must seek
alternatives. The idea of our approach to achieving model complexity control while allowing
m to grow unbounded is to exploit the ridge–lasso duality of the scaled variation regularizer.
On the one hand, by the positive homogeneity of the ReLU function, a reparametrization
yields the equivalence of scaled variation regularization to ridge regression, which is known
as (standard) weight decay in deep learning (Krogh and Hertz, 1991) and, in general, does not
induce sparsity. On the other hand, a linearization of the ReLU function by parameter space
partitioning transforms the regularized problem into a group lasso. This gives a key insight
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FIG 1. Risk curves for varying network width m from the prediction bound (3) with ∥f∗∥2S/σ
2
ε = 1, d= 6, and

n= 1000. The left panel shows the decomposition of prediction error into approximation and estimation errors.
The right panel shows the same plot but with larger m, from which it is apparent that the second valley is lower
than the first.

into the geometry of the global minima: the estimated network weights residing in the same
region must be parallel to each other. Such collinearity greatly reduces the effective number
of parameters and enables us to measure the model complexity in terms of the number of
nonparallel directions. This implicit (within-group) formation and (between-group) breaking
of symmetry lies at the heart of our theoretical analysis.

1.1. Related work. Although not the focus of this paper, approximation theory is often
an integral part and first step of establishing statistical guarantees for neural networks. Sharp
approximation bounds can be obtained for target functions that are well represented by two-
layer neural networks, for which purpose various function spaces have been proposed. For
sigmoidal networks, the seminal work of Barron (1993) considered a class of functions that
have an integral representation involving the Fourier transform. The idea was further devel-
oped by, for example, Bach (2017) and Siegel and Xu (2022) to define variation spaces and
norms for positively homogeneous activation functions, including ReLU. Other recent work
(Ongie et al., 2020; Parhi and Nowak, 2021) has introduced an equivalent characterization of
the variation space for two-layer ReLU networks via the Radon transform and has related it
to more classical function spaces (Parhi and Nowak, 2022). Our choice of the target function
space and its associated norm is similar to but slightly extends those of Ongie et al. (2020)
and Parhi and Nowak (2022) to allow the identification of affine functions.

Generalization bounds have been derived for two-layer neural networks in certain variation
spaces. Most of the existing work focuses on variational formulations of the empirical risk
minimization problem. For example, Bach (2017) and Parhi and Nowak (2022) considered
a variational problem by constraining the network estimator to within a ball in the function
space; Parhi and Nowak (2022) showed that such network estimators are nearly minimax
optimal. A representer theorem of Parhi and Nowak (2021) ensures the existence of a solu-
tion to the variational problem in the form of a finite-width network with a skip connection.
However, the network width of the solution is required to be smaller than the sample size,
thus providing no clue about the effect of overparametrization. One exception is the work
of E, Ma and Wu (2019), which obtained generalization bounds for finite-width two-layer
networks that allow the network width to grow unbounded. The ℓ1 path norm regularization
that they adopted, however, induces sparsity in the network parameters, casting doubt on the
implication of their results for intrinsically overparametrized networks.

Mean-field and neural tangent kernel theories are two popular frameworks for analyzing
the training dynamics of two-layer neural networks in the infinite-width limit. The mean-field
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theory shows that the stochastic gradient descent dynamics of two-layer networks is asymp-
totically described by a nonlinear partial differential equation (PDE), and approximation re-
sults such as laws of large numbers and central limit theorems can be derived (Mei, Montanari
and Nguyen, 2018; Sirignano and Spiliopoulos, 2020; Rotskoff and Vanden-Eijnden, 2022).
The generalization behavior of the PDE model, however, is difficult to study except in some
specific examples. Under a different scaling, overparametrized two-layer networks are shown
to behave as their linearizations at random initialization, and optimization and generaliza-
tion properties can be investigated by exploiting the neural tangent kernel (Jacot, Gabriel
and Hongler, 2018) and the associated kernel methods. This “lazy training” regime (Chizat,
Oyallon and Bach, 2019) entails a large performance gap between realistic and linearized
networks and hence does not explain the power of fully trained neural networks (E, Ma and
Wu, 2020; Ghorbani et al., 2021). Dou and Liang (2021) went a step further and developed
an adaptive theory for neural network training with data-adaptive kernels. Nevertheless, the
impact of adaptivity on generalization remains unclear.

Since the conceptualization of the double descent curve by Belkin et al. (2019), several
theoretical models and explanations have been developed for the phenomenon. A majority
of the effort has focused on linear regression and, in particular, minimum norm interpolators
and ridge estimators, and has recovered the phenomenon under specific generative models
for the random predictors (e.g., Belkin, Hsu and Xu, 2020; Hastie et al., 2022; Muthukumar
et al., 2020). Random matrix theory is the backbone of most of these results, which concerns
the high-dimensional asymptotic regime where n,d →∞ with n � d. Similar asymptotics
have been derived for random feature models (Mei and Montanari, 2022) and classification
problems (Deng, Kammoun and Thrampoulidis, 2022; Liang and Sur, 2022). Li and Meng
(2021) and Liang, Rakhlin and Zhai (2020) demonstrated a “multiple descent” phenomenon
in infinite-dimensional linear regression and kernel ridgeless regression. Despite these impor-
tant developments, it still seems difficult to isolate a general mechanism for the emergence of
double descent from the oversimplified model assumptions and asymptotic regimes. Also, it
remains elusive how these theories extend to realistic neural networks and fit in with our cur-
rent understanding of the bias–variance trade-off (Geman, Bienenstock and Doursat, 1992;
Derumigny and Schmidt-Hieber, 2023).

1.2. Organization of the paper. Section 2 introduces the definitions of two-layer ReLU
networks and the target function class. Theoretical assumptions and approximation properties
are also described. Section 3 presents the regularized estimation framework and formalizes
the ridge–lasso duality. Our main results, including nonasymptotic generalization guarantees
and minimax optimality, are developed in Section 4. Section 5 discusses the random feature
model and points out its suboptimality. Section 6 provides some further discussion. Proofs
are deferred to the Appendix and Supplemental Material.

2. Preliminaries.

2.1. Notation. For 1≤ q <∞, let ‖ · ‖q denote the ℓq-norm of a vector. Let Bd and Sd−1

be the ℓ2 unit ball and unit sphere, respectively, in Rd. For a matrix B= (β1, . . . ,βJ), define
the ℓ2,1-norm ‖B‖2,1 =

∑J
j=1 ‖βj‖2. Denote by M(D) the set of signed measures α on D

with finite total variation |α|(D). In particular, the Dirac measure δx ∈M(D) if x ∈D. For a
function f , let ‖f‖L∞(D) denote the L∞-norm on D, and ‖f‖2 and ‖f‖n the L2-norm under
the distribution µ and its empirical counterpart, respectively.
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2.2. Neural networks and the target function class. We consider the two-layer neural
network g(·;θ) with ReLU activation function and width m given by (2). Let Θm denote the
parameter space. Define the scaled variation norm of the finite-width network g(·;θ) by

(4) ν(θ) =

m∑
k=1

|ak|‖wk‖2,

where wk = (vT
k , bk)

T . This regularizer was also considered by Parhi and Nowak (2021) and
Parhi and Nowak (2022) for two-layer ReLU networks. It coincides with the ℓ1 path norm
proposed by Neyshabur, Tomioka and Srebro (2015a) when d degenerates to zero. For any
d≥ 1, however, it is not separable in the first-layer weights and hence not a path norm. We
will show in Section 3 that the scaled variation regularizer (4) has some desirable properties
that are key to our theoretical analysis.

The network (2) has an integral representation with respect to a discrete signed measure.
Specifically, if we define αm =

∑m
k=1 akδwk

, then

g(x;θ) =

∫
Rd+1

(
σ(vTx+ b)− σ(b)

)
dαm(w) + g(0;θ).

Motivated by this observation, we can naturally represent an infinite-width two-layer ReLU
network associated with a signed measure α ∈M(Rd+1) as

gα(x) =

∫
Rd+1

(
σ(vTx+ b)− σ(b)

)
dα(w) + gα(0).

For gα(·) to be well defined, a sufficient condition is∫
Rd+1

‖v‖2 d|α|(w)<∞,

since by the Lipschitz continuity of the ReLU function, |σ(vTx + b) − σ(b)| ≤ |vTx| ≤
‖v‖2‖x‖2. Treating functions that differ by a constant as identical, we consider the space of
functions modulo constants

(5) G =

{
x 7→

∫
Rd+1

(
σ(vTx+ b)− σ(b)

)
dα(w) :

∫
Rd+1

‖v‖2 d|α|(w)<∞
}
.

Interestingly, there is a one-to-one correspondence between G and M2(Rd+1) ≡
{
α ∈

M(Rd+1) :
∫
Rd+1 ‖v‖2 d|α|(w) <∞

}
. Moreover, functions in G are exactly those that can

be approximated by two-layer ReLU networks with finite scaled variation norm. A formal
statement is given by Proposition S.1 in the Supplementary Material. To equip the function
space G with a norm, we introduce the following definition.

DEFINITION 1. The S-norm of f ∈ G is defined as ‖f‖S =
∫
Rd+1 ‖v‖2 d|αf |(w), where

the signed measure αf ∈M2(Rd+1) is uniquely determined by

f(x) =

∫
Rd+1

(
σ(vTx+ b)− σ(b)

)
dαf (w) + f(0).

Clearly, the S-norm is a functional version of the scaled variation norm except for the
omission of the bias term owing to the centering by σ(b). In fact, the S-norm of a finite-
width two-layer ReLU network g(·;θ) is ‖g(·;θ)‖S =

∑m
k=1 |ak|‖vk‖2, which is bounded

above by the scaled variation norm (4).
Our definition of the target function space is inspired by and related to several previously

studied spaces for two-layer neural networks. In particular, G is equivalent to the bounded
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variation spaces in the Radon domain considered by Ongie et al. (2020) and Parhi and Nowak
(2021) and the variation spaces considered by Bach (2017) and Siegel and Xu (2022), which
in turn contain the spectral Barron spaces and Sobolev spaces (Klusowski and Barron, 2018;
Parhi and Nowak, 2022). Our definition of the S-norm is more transparent in that it is defined
explicitly as a functional of αf , a uniquely determined signed measure. Moreover, it slightly
improves on previous proposals in several respects. Notably, for an affine function fβ(x) =

βTx+ c, ‖fβ‖S = 2‖β‖2 instead of being zero. This has two important consequences: (i)
the S-norm is a norm rather than a seminorm; and (ii) there is no need to introduce a skip
connection in a representer theorem (cf. Ongie et al., 2020; Parhi and Nowak, 2021). The
latter is compatible with deep learning practice since skip connections are only necessary in
deep neural networks such as residual networks (He et al., 2016). More mathematical details
can be found in Supplementary Material E.

2.3. Assumptions. We consider the nonparametric regression model (1) and impose the
following conditions:

(C1) f∗ ∈ GM ≡ {f ∈ G : ‖f‖S ≤M} for some constant M > 0;
(C2) xi ∼ µ independently, where µ is supported in Bd;
(C3) εi ∼N(0, σ2

ε) independently and are independent of xi.

Condition (C2) is mild and standard in the machine learning literature since the predictors
are usually bounded and can be normalized. Under Condition (C2), it suffices to consider
the restrictions of functions in G to Bd; denote the space of such restrictions by G(Bd). An
important consequence from Corollary S.1 in the Supplementary Material is that, for any
f ∈ G(Bd), there exists a signed measure α̃f ∈M(Sd−1 × [−1,1]) such that

(6) f(x) =

∫
Sd−1×[−1,1]

σ(vTx+ b)dα̃f (w) + c, x ∈ Bd.

Compared with a similar integral representation in Parhi and Nowak (2022, Remark 3), note
that no skip connection appears in (6). Thus, functions in G(Bd) have a simpler integral
representation

G(Bd) =

{
x 7→

∫
Sd−1×[−1,1]

σ(vTx+ b)dα(w) : |α|(Sd−1 × [−1,1])<∞
}
,

which will allow us to obtain a sharp approximation bound.

2.4. Approximation properties. Approximation rates for two-layer neural networks of
width m have been derived in various function spaces. A classical probabilistic argument,
first applied to neural networks by Barron (1993), yields an approximation rate of O(1/

√
m)

in the L2-norm; see also Jones (1992) and Siegel and Xu (2020). The approximation rate
has been improved by Makovoz (1996), Bach (2017), and Klusowski and Barron (2018),
among others. In particular, Bach (2017) obtained an O(m−(d+3)/(2d)) rate in the L∞-norm
by using a result from geometric discrepancy theory (Matoušek, 1996); Siegel and Xu (2022)
showed that this rate is sharp and not improvable. We have the following approximation
result for functions in GM , which is a direct consequence of Bach (2017, Proposition 1) and
the integral representation (6).

THEOREM 1. For any f ∈ GM , there exists a network g(·;θ) of width m in the form of
(2) such that ν(θ)≤ 6‖f‖S and

‖f − g(·;θ)‖L∞(Bd) ≤C‖f‖Sm−(d+3)/(2d)

for some constant C > 0 depending only on d.
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The construction in Theorem 1 has a tight control on the scaled variation norm of the
network parameter. This suggests using the scaled variation norm as a regularizer for the
network estimation problem, as we will discuss in the next section.

3. Methodology and the ridge–lasso duality. In this section we introduce our regu-
larized estimation problem and formalize the notion of the ridge–lasso duality through two
different reparametrizations.

3.1. Regularized estimation. In order to learn f∗ from the training sample, we adopt the
penalized empirical risk minimization (ERM) framework and seek to minimize

Jn(θ;λ) =
1

2n

n∑
i=1

(
yi − g(xi;θ)

)2
+ λν(θ),

where g(·;θ) is the two-layer ReLU network of width m in (2), ν(θ) is the scaled variation
norm in (4), and λ > 0 is a regularization parameter. The regularized network estimator is
given by g(·; θ̂), where

(7) θ̂ = argmin
θ∈Θm

Jn(θ;λ).

In a related work, Parhi and Nowak (2022) studied a variational problem in the variation
space associated with two-layer ReLU networks, where regularization is imposed as a con-
straint on the variation norm of the network function. A representer theorem guarantees the
existence of a finitely supported solution of width m≤ n− (d+1) to the variational problem.
However, the finite-dimensional network learning problem is equivalent to the variational
problem only when m≥ n− (d+1). See their Theorem 5 and Section III.B. Therefore, their
results still fall within the underparametrized regime and do not fully characterize the influ-
ence of the network width. By contrast, we provide a direct attack on the finite-dimensional
network learning problem (7) and allow the network width m to vary freely.

3.2. Equivalence to ridge regression. In this and the next subsections, we explore some
useful reformulations of the optimization problem (7), which allow the scaled variation reg-
ularizer, when coupled with the ReLU function, to inherit some crucial properties from ridge
regression (Hoerl, 2020) and the group lasso (Yuan and Lin, 2006), two familiar forms of
regularization in statistics. We start by recasting (7) as the ℓ2-regularized ERM problem

(8) θ̂ℓ2 = argmin
θ∈Θm

{
1

2n

n∑
i=1

(
yi − g(xi;θ)

)2
+

λ

2

m∑
k=1

(a2k + ‖wk‖22)

}
.

To see this, consider the reparametrization θ̃ = T1(θ) defined by

ãk = ak

√
‖wk‖2
|ak|

, w̃k =wk

√
|ak|

‖wk‖2

if |ak|‖wk‖2 6= 0, and (ãk, w̃
T
k ) = 0 otherwise. After the reparametrization, we have |ãk|=

‖w̃k‖2 and the regularizer becomes
m∑
k=1

|ãk|‖w̃k‖2 =
1

2

m∑
k=1

(ã2k + ‖w̃k‖22).

Meanwhile, the positive homogeneity of the ReLU function implies that akσ((xT
k ,1)wk) =

ãkσ((x
T
k ,1)w̃k), so that the network function is invariant under the reparametrization. Note
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further that any solution θ̂ℓ2 to the problem (8) must satisfy θ̂ℓ2 = T1(θ̂ℓ2), because otherwise
it could be improved by a rescaling. Using these facts, we obtain the following equivalence
result.

PROPOSITION 1. Any solution θ̂ℓ2 to the optimization problem (8) is a solution to the
problem (7). Conversely, if θ̂ is a solution to the optimization problem (7), then T1(θ̂) is a
solution to the problem (8).

Proposition 1 says that the solutions to the ℓ2-regularized problem lie on a submanifold of
the solution manifold of the original problem that is invariant under the reparametrization T1.
What is the implication of this equivalence for neural network training dynamics with, for
example, gradient descent? The following result assures us that the gradient flow trajectories
for the two problems are indeed identical when initialized with a reparametrization T1.

PROPOSITION 2. Consider the gradient flow for the optimization problem (7) defined by
d

dt
θ(t) =−∇θJn(θ(t);λ)

and for the problem (8) defined similarly, both initialized at θ(0) = T1(θ0) for an arbitrary
θ0 ∈Θm. Then the trajectories of the two gradient flows coincide.

Observations similar to Proposition 1 have been noted in slightly different forms by, for
example, Neyshabur, Tomioka and Srebro (2015b, Theorem 1) and Parhi and Nowak (2021,
Theorem 8). Initialization with the reparametrization T1 and its stationarity along the gradient
flow have been exploited by Dou and Liang (2021) for studying the ℓ2-regularized ERM
problem, where it is referred to as a “balanced condition.” The messages of the above results
are twofold. First, since ℓ2 regularization does not induce entrywise sparsity in the parameters
(but see Srebro, Rennie and Jaakkola (2004) for an unusual example where it does induce
sparsity in spectral structures), we are assured that a sufficiently wide two-layer network can
be intrinsically overparametrized. Second, several implicit regularization strategies for deep
learning, such as noise injection and early stopping, have been shown to be equivalent to
ℓ2 regularization (Bishop, 1995; Sjöberg and Ljung, 1995), which may help bridge the gap
between our method and implicit regularization.

3.3. Connection to the group lasso. One major obstacle in analyzing the generalization
performance of neural networks is the excessive redundancy and nonidentifiability of the
network parameters under the usual nonconvex formulation. The ReLU activation function,
on the other hand, is simple enough in that it reduces to a linear function once the sign of
vT
k x+ bk is fixed. This naturally suggests a partitioning of the parameter space Rd+1 for w

by certain hyperplanes into regions within which the signs of xT
i v+b are all determined. The

partition will then allow us to reveal a strong symmetry in the estimated network parameters
and recast the optimization problem (7) in a group lasso form, which will be convenient for
the derivation of generalization properties in the next section.

Specifically, denote by X= ((xT
1 ,1)

T , . . . , (xT
n ,1)

T )T the n× (d+1) design matrix, and
D= diag(I(Xw≥ 0)) the diagonal indicator matrix for the positivity of Xw. Consider the
hyperplanes in Rd+1 passing through the origin and orthogonal to xi, defined by xT

i v+b= 0.
These n hyperplanes divide the parameter space Rd+1 into finitely many regions, denoted by
R1, . . . ,Rp, such that D stays constant over (the interior of) each Rj . It is well known (Cover,
1965, Theorem 2) that the number of these regions, p, is at most

(9) 2

d∑
j=0

(
n− 1

j

)
=O

(
d
(en
d

)d
)
,
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which is sharp when X has full rank. Taking into account the sign of a, we thus partition the
parameter space Rd+2 for (a,wT )T into 2p regions

Qj = [0,∞)×Rj , Qp+j = (−∞,0)×Rj , j = 1, . . . , p,

and define Dp+j = −Dj . Clearly, Rj and Qj are convex cones. The linearity of the ReLU
function over each Qj and the optimality of θ̂ entail the following collinearity property.

PROPOSITION 3. For any solution θ̂ = (â1, . . . , âm, ŵT
1 , . . . , ŵ

T
m)T to the optimization

problem (7), if (âk, ŵT
k )

T and (âℓ, ŵ
T
ℓ )

T lie in the interior of the same cone Qj , then ŵk and
ŵℓ must be collinear, that is, ŵk = c0ŵℓ for some constant c0 > 0.

Define Sj = {1≤ k ≤m : (ak,w
T
k )

T ∈Qj}, sj = 1, and sp+j =−1 for j = 1, . . . , p. To
understand why the collinearity must hold, note that the “conewise collinearization” θ̃ =
T2(θ) defined by

(10) ãk = sj , w̃k =
1

|Sj |
∑
ℓ∈Sj

|aℓ|wℓ, k ∈ Sj

does not change the value of the network function on the training sample, but would yield a
smaller scaled variation norm by the triangle inequality if the network weights in Qj were not
all collinear. Proposition 3 provides a useful geometric insight into the regularization effect
of scaled variation norm: it favors the most symmetric (yet not parsimonious) representation
among many equivalent parametrizations within the same cone.

The parameter redundancy suggested by Proposition 3 motivates us to collect the net-
work weights falling within the same cone and define the aggregated parameters B(θ) =
(β1(θ), . . . ,β2p(θ)) with

βj(θ) =
∑
k∈Sj

|ak|wk.

With this new set of parameters, the network function on the training sample can be written
in the linear form

(11)
m∑
k=1

akσ(Xwk) =

2p∑
j=1

DjXβj(θ),

where σ(·) applies componentwise. For any θ ∈Θm, the triangle inequality implies that

‖B(θ)‖2,1 =
2p∑
j=1

‖βj(θ)‖2 ≤
2p∑
j=1

∑
k∈Sj

|ak|‖wk‖2 = ν(θ),

where the equality holds under the reparametrization T2. In particular, since the estimator θ̂
satisfies the collinearity property, we can replace ν(θ̂) by ‖B(θ̂)‖2,1 and reformulate (7) as
a group lasso problem. Denote by y= (y1, . . . , yn)

T the response vector. We summarize the
above discussion in the following proposition.

PROPOSITION 4. For any θ ∈ Θm, the reparametrization θ̃ = T2(θ) defined in (10)
satisfies g(xi; θ̃) = g(xi;θ) for i = 1, . . . , n and ‖B(θ̃)‖2,1 = ν(θ̃) ≤ ν(θ). Furthermore,
the solution θ̂ to the optimization problem (7) satisfies

Jn(θ̂;λ) =
1

2n

∥∥∥∥y−
2p∑
j=1

DjXβj(θ̂)

∥∥∥∥2
2

+ λ‖B(θ̂)‖2,1.
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The group lasso formulation allows for borrowing ideas from high-dimensional statistics
to derive generalization bounds. We emphasize, however, that the parameter space partition
and the resulting group structure are data-adaptive and not known a priori. Hence, despite the
connection to the group lasso, two-layer ReLU networks are radically different from linear
models and hold the potential for better generalization.

Similar connections between ℓ2-regularized two-layer ReLU networks and the group lasso
have been explored by Pilanci and Ergen (2020) and Wang, Lacotte and Pilanci (2022) from
a purely optimization standpoint. A complete equivalence result, however, requires m to be
sufficiently large; see Theorem 1 of Pilanci and Ergen (2020). Our key observation is that for
our purposes it suffices to have the weaker result of Proposition 4, which places no restriction
on the minimum network width.

4. Main results. In this section we establish statistical guarantees for two-layer ReLU
networks. In Section 4.1 we present nonasymptotic bounds on the prediction error of the
regularized network estimator, and in Section 4.2 show that they are nearly minimax optimal.

4.1. Nonasymptotic generalization bounds. For the nonparametric regression model (1)
and the regularized network estimator g(·; θ̂) defined by (7), we are interested in bounding
the empirical error

‖g(·; θ̂)− f∗‖2n =
1

n

n∑
i=1

(
g(xi; θ̂)− f∗(xi)

)2
in the fixed design case, and the prediction (or generalization) error

‖g(·; θ̂)− f∗‖22 = Ex∼µ

(
g(x; θ̂)− f∗(x)

)2
in the random design case. Our main techniques for proving the nonasymptotic bounds are
inspired by and synthesize those in previous work on high-dimensional linear models and
two-layer neural networks. We first note that the technical arguments best suited to the under-
parametrized and overparametrized regimes may be rather different. For underparametrized
networks, complexity control via metric entropy (e.g., Barron, 1994; Parhi and Nowak, 2022)
can be effective and give sharp bounds. Moving into the overparametrized regime, however,
entropy-based bounds tend to be too loose and pessimistic since they do not take into account
the parameter redundancy growing with the network width. We therefore turn to the group
lasso formulation outlined in Section 3.3 and borrow ideas from (group) ℓ1-regularized linear
regression and norm-based complexity control. Our first result concerns the empirical error
of the regularized network estimator.

THEOREM 2. Under Conditions (C1), (C3), and the assumptions that ‖xi‖2 ≤ 1 and√
en > d, the regularized network estimator g(·; θ̂) with λ=C1σε

√
d log(en/d)/n satisfies

(12) ‖g(·; θ̂)− f∗‖2n ≤C

{
‖f∗‖2Sm−(d+3)/d + (σ2

ε + ‖f∗‖2S)
√

d log(en/d)

n

}
with probability at least 1−O(n−C2), and

(13) E‖g(·; θ̂)− f∗‖2n ≤C

{
‖f∗‖2Sm−(d+3)/d + (σ2

ε + ‖f∗‖2S)
√

d log(en/d)

n

}
,

for some constants C1,C2,C > 0.
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Throughout this section, the constants are independent of m and n, but may depend on d,
M , and σε; we have suppressed the dependence for simplicity, which can be made explicit
by inspecting our proofs. Our technique for proving Theorem 2 differs from the standard
group lasso theory for sparse linear regression in two aspects. First, it requires an extension
of the theory to the case where the linear model is only approximate, as discussed in, for
example, Bühlmann and van de Geer (2011, Section 6.2.3). Here the linear model represents
the reparametrized two-layer neural network, whose approximation error has been given by
Theorem 1. Second, and more importantly, there is no guarantee that this linear model will be
sparse or its design will satisfy a compatibility or restricted eigenvalue condition that is often
imposed in high-dimensional linear regression. As a result, we can only prove a prediction
bound at a slower rate, which is analogous to those for the lasso obtained by Bühlmann and
van de Geer (2011, Corollary 6.1) and Bartlett, Mendelson and Neeman (2012).

The error bounds in Theorem 2 decompose into a bias term or approximation error that
arises from using a finite-width neural network to approximate the nonparametric model (1),
and a variance term or estimation error that accounts for the variability in estimating the finite-
width network. The most surprising fact about this decomposition is that there is no trade-off
between the two terms: as the network width m increases, the bias always decreases while
the variance remains constant. To appreciate why this is possible, note first that the variance
scales as O(

√
log p/n) as a consequence of the lack of parameter identifiability. Moreover,

the effective dimension p is bounded by O(d(en/d)d) from (9), which does not depend on the
network width m. In fact, when the design matrix X is of rank r < n, one can further replace
d by r (Cover, 1965). In other words, no matter how large m grows, the number of distinct
(nonparallel) features extracted by the first layer of the network is finite, leading to an upper
bound for the variance. This result extends beyond the classical bias–variance trade-off and
demonstrates the virtues of overparametrization in two-layer neural networks.

Combining Theorem 2 with a maximal inequality, we obtain similar bounds on the predic-
tion error of the regularized network estimator.

THEOREM 3. Under Conditions (C1)–(C3), if m ≥ C1(n logn/d)
d/(2(d+3)), then the

regularized network estimator g(·; θ̂) with λ= λ1 ≡C2σε
√

d log(en/d)/n satisfies

(14) ‖g(·; θ̂)− f∗‖22 ≤C

{
‖f∗‖2Sm−(d+3)/d + (σ2

ε + ‖f∗‖2S)
√

d log(en/d)

n

}
with probability at least 1−O(n−C3), and

(15) E‖g(·; θ̂)− f∗‖22 ≤C

{
‖f∗‖2Sm−(d+3)/d + (σ2

ε + ‖f∗‖2S)
√

d log(en/d)

n

}
,

for some constants C1,C2,C3,C > 0 and large enough n.

It is worthwhile to compare our results with those in the literature on overparametrized
two-layer ReLU networks. Recent research has focused on the neural tangent kernel regime
and showed that sufficiently wide two-layer ReLU networks trained by gradient descent with
random initialization achieve a generalization error of O(n−1/2) up to logarithmic factors;
see, for example, Arora et al. (2019), E, Ma and Wu (2020), and Ji and Telgarsky (2020).
While these results deliver roughly the same rates as ours, the target functions they considered
fall in a certain reproducing kernel Hilbert space, which constitutes only a small subset of our
target function space. In addition, our analysis is algorithm-independent and is valid for any
global optimum.

E, Ma and Wu (2019) considered explicit regularization for two-layer ReLU networks and
obtained generalization bounds of O(m−1+n−1/2) up to logarithmic factors, which are of a
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similar nature to ours. However, several differences are notable. First, they employed the ℓ1
path norm, which penalizes on the ℓ1-norm of the first-layer weights and promotes sparsity.
Accordingly, they considered the so-called Barron space

B2 =

{
x 7→

∫
Sd−1
1

a(v)σ(vTx)dρ(v) :

∫
Sd−1
1

a(v)2 dρ(v)<∞
}
,

where Sd−1
1 is the ℓ1 unit sphere in Rd. To compare with our definition of G in (5), let

dαρ(w) = a(v)I(v ∈ Sd−1
1 , b= 0)dρ(v), where I(·) is the indicator function. Then∫

Rd+1

‖v‖2 d|αρ|(w)≤
√
d

∫
Sd−1
1

|a(v)|dρ(v)≤
√
d

(∫
Sd−1
1

a(v)2 dρ(v)

)1/2

<∞

by the Cauchy–Schwarz inequality. Thus, we see that B2 is a subset of our target function
space G. Furthermore, they resorted to a truncated risk to deal with the noisy case, which
introduces some technicalities that seem unnecessary.

The group lasso approach and the size-independent upper bound (9) for p, albeit effective
in the overparametrized regime, tend to overestimate the variance for sufficiently narrow
networks. In this case, a standard metric entropy argument may be more appropriate and
give a sharper estimate of the variance that increases with the network width. Adapting this
argument to our regularization problem yields the following result, which demonstrates a
classical bias–variance trade-off.

THEOREM 4. Under Conditions (C1)–(C3), if m< n/(d log(en/d)), then the regular-
ized network estimator g(·; θ̂) with λ = λ2 ≡ C1σεmax{m−(d+3)/d,md log(en/d)/n} sat-
isfies

‖g(·; θ̂)− f∗‖22 ≤C

{
‖f∗‖2Sm−(d+3)/d + (σ2

ε + ‖f∗‖2S)
md log(en/d)

n

}
with probability at least 1−O(n−C2) for some constants C1,C2,C > 0.

The proof technique used for Theorem 4 differs substantially from those in previous work,
since we are analyzing a penalized rather than constrained problem and do not impose any
boundedness constraints on the network function or parameters; cf. Schmidt-Hieber (2020),
Farrell, Liang and Misra (2021), and Parhi and Nowak (2022).

Finally, noting that the ranges of allowable m in Theorems 3 and 4 partially overlap, we
put them together to obtain a complete picture of the generalization behavior of two-layer
ReLU networks, as stated in the following encompassing result.

THEOREM 5. Under Conditions (C1)–(C3), the regularized network estimator g(·; θ̂)
with λ=min(λ1, λ2), where λ1 and λ2 are defined in Theorems 3 and 4, respectively, satis-
fies

‖g(·; θ̂)− f∗‖22 ≤C

[
‖f∗‖2Sm−(d+3)/d

+ (σ2
ε + ‖f∗‖2S)min

{√
d log(en/d)

n
,
md log(en/d)

n

}]
with probability at least 1−O(n−C1) for some constants C1,C > 0.
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The implications of Theorem 5 have been discussed in the Introduction. In particular, it
gives rise to the double descent risk curve illustrated in Figure 1 and provides a simple yet
appealing explanation for the curious phenomenon. In the underparametrized regime, the
network estimator behaves as the usual nonparametric methods, with the network width m
controlling the trade-off between bias and variance. A too small or too large m will result
in an inferior performance, and a narrow valley around m0 � (n/(d logn))d/(2d+3) lies in
between. As m continues to increase and exceeds some threshold m1 �

√
n/(d logn), the

intrinsic model complexity and hence the variance of the network estimator become saturated
and remain constant, while the bias diminishes consistently. This leads to a second, flat valley
extending toward infinity.

Comparisons between the two valleys yield further insights. Asymptotically, the conver-
gence rate of the first valley or underparametrized minimum risk, O((d logn/n)(d+3)/(2d+3)),
is slightly smaller than that of the second valley or overparametrized minimum risk,
O(

√
d logn/n). In finite samples, however, this comparison can be reversed. A little algebra

shows that the second valley is lower than the first whenever

(16) κ≡
‖f∗‖2S

σ2
ε + ‖f∗‖2S

>

(
1

2

)(2d+3)/d( n

d logn

)3/(2d)

.

When d � logn, the above condition approximately becomes κ > 1/4, or the signal-to-
noise ratio ‖f∗‖2S/σ2

ε = κ/(1− κ)> 1/3. An example with κ= 1, d= 6, and n= 1000 was
given in Figure 1. This makes intuitive sense since the reduction in approximation error plays
a more important role when the signal is stronger. From the practitioner’s perspective, the
overparametrized regime is also more attractive in that it provides an infinitely wide sweet
spot that avoids the choice of an optimal network width.

4.2. Minimax lower bounds. We have revealed that the risk curve of our estimator has
two valleys. The convergence rate of the first valley is known to be minimax optimal over the
function class GM (Parhi and Nowak, 2022). In fact, the underparametrized result (Theorem
4) relies crucially on the assumption that M is finite; otherwise, the entropy calculations may
be affected. In this subsection, we investigate the optimality of the second valley. Although
it cannot be optimal over GM , we will show that it is nearly minimax optimal over the larger
function class G.

To gain intuition for the optimal rate, for any probability measure ρ on Sd−1 × [−1,1], we
consider the reproducing kernel Hilbert space (RKHS)

Hρ =

{
x 7→

∫
Sd−1×[−1,1]

a(w)σ(vTx+ b)dρ(w) :

∫
Sd−1×[−1,1]

a(w)2 dρ(w)<∞
}

associated with the kernel

(17) Hρ(x,z) = Ew∼ρ

(
σ(vTx+ b)σ(vT z+ b)

)
.

If the target function f∗ ∈Hρ∗ for some known ρ∗, then the problem of recovering f∗ reduces
to kernel ridge regression. It was shown by Caponnetto and De Vito (2007) that the minimax
optimal rate for learning functions in an RKHS is n−γ/(γ+1) when the jth eigenvalue of the
kernel decays at the rate of j−γ for γ > 1. Noting that Hρ ⊂ G for all ρ and letting γ → 1,
we see that the desired minimax optimal rate should be n−1/2. This heuristic argument is
formalized in the following minimax result.

THEOREM 6. Assume that xi ∼ Uniform(Bd) and εi ∼ N(0,1). Then there exists a
constant C > 0 such that

inf
f̂

sup
f∗∈G

E‖f̂ − f∗‖22 ≥
C√

n logn
,
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where the infimum is taken over all estimators.

This result says that the upper bounds on the overparametrized minimum risk in Theorems
3 and 5 are sharp up to logarithmic factors. Without requiring the existence of a finite M ,
these bounds are essentially unimprovable, which corroborates the effectiveness of over-
parametrized two-layer ReLU networks.

5. Suboptimality of random feature models. Random feature models (Rahimi and
Recht, 2007) provide a stochastic approximation to kernel methods by first mapping the in-
put into a randomized feature space and then applying standard linear methods. Alternatively,
they can be interpreted as two-layer neural networks with random first-layer weights and, as
such, often serve as a prototype for studying the generalization behavior of realistic neural
networks. For example, Mei and Montanari (2022) computed the prediction error of random
feature regression that recovers the double descent curve in the asymptotic regime where
m,n,d→∞ with m� n � d. We now show, however, that random feature models are not
sufficient to explain the generalization power of fully trained two-layer networks by proving
that they are suboptimal over our target function space.

Specifically, we consider the random feature model

hρ0
(x;a) =

1√
m

m∑
k=1

akσ(v
T
k x+ bk),

where wk = (vT
k , bk)

T ∼ ρ0 independently for some fixed ρ0 on Sd−1 × [−1,1] and a =
(a1, . . . , am)T is the vector of parameters to be estimated. Minimizing the ℓ2-regularized
empirical risk

1

2n

m∑
k=1

(
yi − hρ0

(xi;a)
)2

+
λ

2
‖a‖22

gives the ridge estimator â(λ) = (K + nλIn)
−1y, where K = (Kij) ∈ Rn×n is the kernel

matrix with entries

Kij =
1

m

m∑
k=1

σ(vT
k xi + bk)σ(v

T
k xj + bk).

In fact, Kij →Hρ0
(xi,xj) as m→∞ for the kernel Hρ defined in (17). The following result

establishes a lower bound on the worst-case performance of optimally tuned ridge estimators
in random feature models.

PROPOSITION 5. Under Conditions (C2) and (C3), there exists a universal constant
C > 0 such that

sup
f∗∈GM

inf
λ>0

E‖hρ0
(·; â(λ))− f∗‖22 ≥

CM

d(min(m,n))1/d
.

The proof of Proposition 5 builds on an approximation result of Barron (1993, Theorem 6)
for linear subspaces with fixed basis functions. Similar lower bounds have been obtained by
E, Ma and Wu (2020) for random feature models trained by gradient descent with noiseless
data. The exponential dependence of the rate on d manifests the curse of dimensionality in
random feature models for learning functions beyond an RKHS.
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6. Discussion. The debate over double descent and the virtues of overparametrization
casts a cloud over the trustworthiness of modern deep learning methods and undermines the
foundations of large machine learning models. We have developed a nonasymptotic general-
ization theory for finite-width two-layer neural networks without resorting to mean-field or
neural tangent kernel approximations. As far as we are aware, this provides the first complete
explanation for the double descent phenomenon beyond linear and kernel-type (e.g., random
feature) methods. Compared with the existing literature, our theoretical framework has the
following advantages: (i) we take a nonparametric viewpoint and consider target functions in
a large function space, which allows us to define approximation and estimation errors in an
appropriate manner and directly tackle the problem of bias–variance trade-off; (ii) unlike pre-
vious asymptotic studies, our nonasymptotic approach helps separate the effects of diverging
dimensionality and overparametrization on generalization performance; (iii) the explicit reg-
ularization strategy we have adopted naturally extends classical and kernel ridge regression,
making our results independent of the algorithmic specifics of nonconvex optimization.

Our theory yields insights that have not been previously obtained under simpler models or
asymptotic regimes. We highlight some important ones as follows:

Impact of dimensionality. In linear regression, the number of parameters coincides with
the dimensionality, and hence it is impossible to decouple their effects. For kernel methods,
Liang, Rakhlin and Zhai (2020) and Montanari and Zhong (2022) relaxed the proportional
asymptotics on n and d, but still required d to be polynomially growing with n. Our results
show that for two-layer neural networks the double descent curve persists even when d is
fixed and, therefore, the phenomenon is not tied to high dimensionality. Nevertheless, the di-
mensionality does play a role in determining the superiority of the overparametrized regime.
Specifically, as seen from (16), a moderately large d suffices to ensure the global optimality
of infinite overparametrization over a wide range of signal-to-noise ratio.

Double descent with optimal regularization. In linear and random feature models, it has
been shown that optimal ridge regularization eliminates double descent (Hastie et al., 2022;
Nakkiran et al., 2021; Mei and Montanari, 2022). This raises the concern of whether double
descent should be treated as a pathological behavior due to insufficient regularization and
hence should be avoided or mitigated in practice. Contrary to this view, our theory, which
has been derived under optimal choices of the regularization parameter, provides a radically
different framework in which double descent is an intrinsic feature rather than an artifact and
cannot be eliminated by optimal regularization.

Complexity control. As pointed out by Belkin et al. (2020), the most interesting aspects
of double descent is not the peaking phenomenon itself but its connection to classical ideas
of the bias–variance trade-off and complexity control. Unfortunately, previous work offers
little insight in this regard and does not clarify the mechanism behind the superiority of
overparametrization. By contrast, our theory gives a clear explanation of what drives double
descent: the partition of the parameter space into finitely many regions and the emergence of
collinearity within each region reduce the effective dimensionality, thereby achieving adap-
tive complexity control in the overparametrized regime.

Bias–variance trade-off. The literature presents a mixed picture of bias and variance in
the overparametrized regime (Hastie et al., 2022; Mei and Montanari, 2022): while the vari-
ance always decreases, the bias may increase (for well-specified linear models), decrease (for
random feature models), or first decrease and then increase (for misspecified linear models).
These somewhat peculiar behaviors are partly due to the fact that the ground truth in these
settings is parametric and varying with the dimensionality. Neural networks, however, are
intrinsically nonparametric, and the bias–variance trade-off should be discussed within this
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framework (Geman, Bienenstock and Doursat, 1992). Embracing this viewpoint, our results
show that the bias always decreases, while the variance remains constant after the saturation
threshold. Although there is no more trade-off in the overparametrized regime, the general
principle of bias–variance trade-off in the sense of Derumigny and Schmidt-Hieber (2023)
still seems to hold: the variance is lower bounded if the bias is small.

Our framework may be extended in several directions. The most important would be the
development for deep neural networks, by following the idea of finding a convex reformu-
lation and analyzing the symmetric structures arising from overparametrization. Such a for-
mulation does not seem to be readily available, but see Ergen and Pilanci (2021) for useful
results in some special cases. For simplicity, we have considered only explicit regularization
and the theoretical optimal solution to the regularized problem. An interesting direction is to
take into account practical algorithms and implicit regularization, possibly by exploring the
connection of our problem to ℓ2 regularization. Finally, it would be worthwhile to extend our
theory to classification problems and more network architectures such as convolutional and
recurrent neural networks.

APPENDIX A: PROOFS FOR SECTION 3

In this appendix we provide the proofs of Propositions 1–4. To simplify the notation, we
write x̃i = (xT

i ,1)
T .

PROOF OF PROPOSITION 1. Let θ̂ℓ2 be an arbitrary solution to problem (8) and θ̂ an
arbitrary solution to problem (7). By the optimality of θ̂ℓ2 and θ̂, we have

(18) J ℓ2
n (θ̂ℓ2 ;λ)≤ J ℓ2

n (T1(θ̂);λ), Jn(θ̂;λ)≤ Jn(θ̂ℓ2 ;λ),

where J ℓ2
n (θ;λ) is the objective function of (8). By the definition of T1, J ℓ2

n (T1(θ);λ) =
Jn(θ;λ) for any θ ∈Θm. Moreover, θ̂ℓ2 = T1(θ̂ℓ2). Combining these facts with (18) gives

J ℓ2
n (θ̂ℓ2 ;λ)≤ J ℓ2

n (T1(θ̂);λ) = Jn(θ̂;λ)≤ Jn(θ̂ℓ2 ;λ) = J ℓ2
n (θ̂ℓ2 ;λ),

which means that θ̂ℓ2 is a minimizer of Jn(θ;λ) and that T1(θ̂) a minimizer of J ℓ2
n (θ;λ),

completing the proof.

PROOF OF PROPOSITION 2. By direct differentiation, the gradient flow dθ(t)/dt =
−∇θJn(θ(t);λ) for problem (7) can be written as

d

dt
aj(t) =

1

n

n∑
i=1

(
yi − g(xi;θ(t))

)2
σ(x̃T

i wj(t))− λ‖wj(t)‖2∂|aj(t)|,(19)

d

dt
wj(t) =

1

n

n∑
i=1

(
yi − g(xi;θ(t))

)2
aj(t)∂σ(x̃

T
i wj(t))x̃i − λ|aj(t)|∂‖wj(t)‖2,(20)

for j = 1, . . . ,m, where ∂ denotes the subgradient. Using the identities a∂|a| = |a|,
wT∂‖w‖2 = ‖w‖22, and z∂σ(z) = σ(z), left multiplying (19) by aj(t) and (20) by wj(t)

T

gives

d

dt
|aj(t)|2 =

d

dt
‖wj(t)‖22, j = 1, . . . ,m.

If the initialization is reparametrized by T1, that is, |aj(0)|2 = ‖wj(0)‖22 for all j, then we
have, for all t≥ 0,

(21) |aj(t)|2 = ‖wj(t)‖22, j = 1, . . . ,m.
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Similarly, the gradient flow for problem (8) can be written as

d

dt
aℓ2j (t) =

1

n

n∑
i=1

(
yi − g(xi;θℓ2(t))

)2
σ(x̃T

i w
ℓ2
j (t))− λaℓ2j (t),(22)

d

dt
wℓ2

j (t) =
1

n

n∑
i=1

(
yi − g(xi;θℓ2(t))

)2
aℓ2j (t)∂σ(x̃T

i w
ℓ2
j (t))x̃i − λwℓ2

j (t),(23)

for j = 1, . . . ,m. Using (21) we have ‖wj(t)‖2∂|aj(t)| = |aj(t)|∂|aj(t)| = aj(t) and
|aj(t)|∂‖wj(t)‖2 = ‖wj(t)‖2∂‖wj(t)‖2 =wj(t), in which case the gradient flows (19)–(20)
and (22)–(23) are identical. Initialized at the same point, their trajectories must coincide.

To prove Propositions 3 and 4, we first introduce the following lemma, which says that the
ReLU function is linear over each cone Qj .

LEMMA 1. If (ak,wT
k )

T and (aℓ,w
T
ℓ )

T lie in the interior of the same cone Qj , then

akσ(w
T
k x̃i) + aℓσ(w

T
ℓ x̃i) = sjσ(|ak|wT

k x̃i + |aℓ|wT
ℓ x̃i)

for i= 1, . . . , n.

PROOF. By definition, all points (a,wT )T in the interior of Qj satisfy sgn(a) = sj and
I(wT x̃i ≥ 0) = (Dj)ii, where (Dj)ii is the ith diagonal entry of Dj . Then

akσ(w
T
k x̃i) + aℓσ(w

T
ℓ x̃i)

= akw
T
k x̃iI(w

T
k x̃i ≥ 0) + aℓw

T
ℓ x̃iI(w

T
ℓ x̃i ≥ 0)

= sj(Dj)ii(|ak|wT
k x̃i + |aℓ|wT

ℓ x̃i) = sjσ(|ak|wT
k x̃i + |aℓ|wT

ℓ x̃i).

PROOF OF PROPOSITION 3. Suppose that (âk, ŵT
k )

T and (âℓ, ŵ
T
ℓ )

T lie in the interior of
Qj but are not collinear. Define the new parameter θ̃ = (ã1, . . . , ãm, w̃T

1 , . . . , w̃
T
m)T with

ãk = ãℓ = sj , w̃k = w̃ℓ =
1

2
(|ak|wk + |aℓ|wℓ),

while keeping the other components unchanged. Then by Lemma 1 we have

âkσ(ŵ
T
k x̃i) + âℓσ(ŵ

T
ℓ x̃i) = ãkσ(x̃

T
i w̃ℓ) + ãℓσ(x̃

T
i w̃ℓ),

and by the triangle inequality,

|ãk|‖w̃k‖2 + |ãℓ|‖w̃ℓ‖2 =
∥∥|âk|ŵk + |âℓ|ŵℓ

∥∥
2
< |âk|‖ŵk‖2 + |âℓ|‖ŵℓ‖2.

This entails that Jn(θ̃;λ)< Jn(θ̂;λ), which contradicts the optimality of θ̂.

PROOF OF PROPOSITION 4. By Lemma 1 and the definition of θ̃ = T2(θ) in (10), we
have

g(xi;θ) =

2p∑
j=1

∑
k∈Sj

akσ(w
T
k x̃i) =

2p∑
j=1

sjσ

(∑
k∈Sj

|ak|wT
k x̃i

)

=

2p∑
j=1

∑
k∈Sj

ãkσ(w̃
T
k x̃i) = g(xi; θ̃)
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and

‖B(θ̃)‖2,1 =
2p∑
j=1

‖βj(θ̃)‖2 =
2p∑
j=1

∥∥∥∥∑
k∈Sj

|ãk|w̃k

∥∥∥∥
2

=

m∑
k=1

|ãk|‖w̃k‖2 = ν(θ̃)

=

2p∑
j=1

∥∥∥∥∑
k∈Sj

|ak|wk

∥∥∥∥
2

≤
m∑
k=1

|ak|‖wk‖2 = ν(θ).

To prove the second assertion, from (11) we have, for any θ ∈Θm,

(24)
1

2n

∥∥∥∥y−
m∑
k=1

akσ(Xwk)

∥∥∥∥2
2

=
1

2n

∥∥∥∥y−
2p∑
j=1

DjXβj(θ)

∥∥∥∥2
2

.

Also, by the collinearity property of θ̂ from Proposition 3,

(25) ‖B(θ̂)‖2,1 =
2p∑
j=1

∥∥∥∥∑
k∈Sj

|âk|ŵk

∥∥∥∥
2

=

m∑
k=1

|âk|‖ŵk‖2 = ν(θ̂).

Combining (24) and (25) yields the expression for Jn(θ̂;λ).

APPENDIX B: PROOFS OF RESULTS IN THE OVERPARAMETRIZED REGIME

In this appendix we provide the proofs of the high-probability bounds (12) and (14) for
the regularized estimator under the overparametrized regime. Their expectation counterparts
(13) and (15) are deferred to Supplementary Material C.

We first introduce some notation. We write p≡ d(en/d)d and define the class of two-layer
ReLU networks with a bounded scaled variation norm as F(m,F ) =

{
g(x;θ) : ν(θ)≤ F

}
.

For any f∗ ∈ GM , denote by g(·;θ∗) the best approximation of f∗ under the L∞(Bd) norm
in Theorem 1, where θ∗

m = (a∗1, . . . , a
∗
m,w∗T

1 , . . . ,w∗T
m )T .

PROOF OF (12) IN THEOREM 2. By the optimality of θ̂, we have

1

2n

n∑
i=1

(
g(xi; θ̂)− yi

)2
+ λν(θ̂)≤ 1

2n

n∑
i=1

(
g(xi;θ

∗)− yi
)2

+ λν(θ∗).

Rearranging terms gives

(26)

1

2
‖g(·; θ̂)− f∗(·)‖2n

≤ λ
(
ν(θ∗)− ν(θ̂)

)
+

1

2
‖g(·;θ∗)− f∗(·)‖2n +

1

n

∣∣∣∣ n∑
i=1

εi
{
g(xi; θ̂)− g(xi;θ

∗)
}∣∣∣∣

≡ T1 + T2 + T3.

Write B(θ∗) as B∗ = (β∗
1, . . . ,β

∗
2p) and B(θ̂) as B̂ = (β̂1, . . . , β̂2p). Since we need only

evaluate g(·;θ∗) on the training sample, by Proposition 4 we assume without loss of gener-
ality ν(θ∗) = ‖B∗‖2,1. It also follows from Proposition 4 that ν(θ̂) = ‖B̂‖2,1. These facts,
together with the triangle inequality, give

T1 = λ
(
‖B∗‖2,1 − ‖B̂‖2,1

)
≤ 2λ‖B∗‖2,1 − λ‖B∗ − B̂‖2,1.(27)
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To bound T2, applying Theorem 1 yields

T2 =
1

2n

n∑
i=1

(
g(xi;θ

∗)− f∗(xi)
)2 ≤C1‖f∗‖2Sm−(d+3)/d(28)

for some constant C1 > 0. By Hölder’s inequality,

T3 =
1

n

∣∣∣∣εT 2p∑
i=1

DiX(β̂i −β∗
i )

∣∣∣∣≤ n−1/2 max
1≤j≤2p

‖vj‖2
2p∑
i=1

‖β̂i −β∗
i ‖2,(29)

where vT
j = εTDjX/

√
n and ε= (ε1, . . . , εn)

T . Thus, combining (27)–(29), choosing λ≥
2n−1/2maxj ‖vj‖2, and noting that ν(θ∗)≤ 6‖f∗‖S in Theorem 1, we obtain

(30)

‖g(·; θ̂)− f∗(·)‖2n

≤ 2C1‖f∗‖2Sm−(d+3)/d + 4λν(θ∗) + 2

(
1√
n

max
j=1,...,p

‖vj‖2 − λ

)
‖B∗ − B̂‖2,1

≤ 2C1‖f∗‖2Sm−(d+3)/d + 24λ‖f∗‖S .

It remains to bound n−1/2maxj ‖vj‖2. For simplicity, let Hj = DjXXTDj/n, so that
vT
j vj = εTHjε. By the definition of Dj and the fact that ‖xi‖2 ≤ 1 for all i, we have

‖Hj‖2 ≤ tr(Hj)≤ n−1 tr(XTX)≤ 2.

Applying a tail bound for quadratic forms of sub-Gaussian vectors (Hsu et al., 2012) gives

P
(
‖vj‖22 ≥ 2σ2

ε + 4σ2
ε

√
t+ 4σ2

ε t
)
≤ e−t.

By the union bound, P
(
maxj ‖vj‖22 ≥ 2σ2

ε + 4σ2
ε

√
t + 4σ2

ε t
)
≤ 2pe−t. Recall that p ≤

2d(en/d)d = 2p. Choosing t= 5 log(4p) and noting that log(4p)> 1 yields

(31) max
1≤j≤2p

‖vj‖22 < 2σ2
ε + 4σ2

ε

√
5 log(4p) + 20σ2

ε log(4p)< 49σ2
ε log(4p)

with probability at least 1−O(p−4). Thus, for λ≥ 2n−1/2maxj ‖vj‖2 to hold with at least
the same probability, it suffices to set λ = 14σε

√
n−1 log(4p). Substituting this λ into (30)

gives

‖g(·; θ̂)− f∗(·)‖2n ≤ 2C1‖f∗‖2Sm−(d+3)/d + 168
(
σ2
ε + ‖f∗‖2S

)√ log(4p)

n
,

where we have used the inequality 2σε‖f∗‖S ≤ σ2
ε +‖f∗‖2S . To complete the proof, note that

when
√
en > d,

−2 log p≤ 2d log(d)− 2d log(en)≤−d log(en).(32)

The desired result follows if we choose C2 = 2d so that p−4 ≤ (en)−C2 .

To prove (14) in Theorem 3, we need the following maximal inequality whose proof can
be found in the Supplementary Material G.1.

LEMMA 2. Suppose that x1, . . . ,xn are independently sampled from the distribu-
tion µ. Let F∗(m,1) = {f − f∗ : f ∈ F(m,1), f∗ is fixed with ‖f∗‖S ≤ 1}, and Zn =
supf∈F∗(m,1)

∣∣‖f‖2n−‖f‖22
∣∣. Then EZn ≤CFn

−1/2 for some constant CF > 0 only depend-
ing on d. Furthermore, if n≥C2

F , then

P

(
Zn ≥ CF√

n
+ t

)
≤ exp

{
− n

32
min

(
t2

12e
, t

)}
.(33)
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PROOF OF (14) IN THEOREM 3. Let f̂(·) = g(·; θ̂) and ρn = 6σε
√

n−1 log(4p). Define
the event E0 = {ρn ≥ n−1/2maxj ‖vj‖2}. It follows from (31) that P (E0)≥ 1−O(p−4).

On the event E0, by (30) we have

‖f̂ − f∗‖2n ≤ 2C1‖f∗‖2Sm−(d+3)/d + 4λν(θ∗) + 2(ρn − λ)
(
‖B∗‖2,1 + ‖B̂‖2,1

)
.

Since ν(θ∗) = ‖B∗‖2,1 ≤ 6‖f∗‖S and ‖B̂‖2,1 = ν(θ̂), by choosing λ= 2ρn we further ob-
tain

λν(θ̂)≤ 3λν(θ∗) + 2C1‖f∗‖2Sm−(d+3)/d.(34)

If m≥C2

(
n/ log p

)d/(2(d+3)) for some constant C2 > 0 such that

C1

(
‖f∗‖S/σε

)
m−(d+3)/d

√
n/{49 log(4p)}< 1,(35)

then ν(θ̂)≤ 20‖f∗‖S also holds with probability 1−O(p−4). Let ∆̂ = f̂ − f∗ and let ‖∆̂‖S
be the S-norm of ∆̂. By the definition of S-norm and the triangle inequality, ‖∆̂‖S ≤ ‖f̂‖S +
‖f∗‖S ≤ ν(θ̂) + ‖f∗‖S . Therefore, with the same probability

∆̂

21‖f∗‖S
=

f̂

21‖f∗‖S
− f∗

21‖f∗‖S
∈ F∗(m,1).(36)

By Lemma 2, we have, with probability at least 1− exp
{
−nt2/384

}
,

(37) ‖∆̂‖22 ≤ ‖∆̂‖2n +
441√
n
CF‖f∗‖2S + 441‖f∗‖2St

for any t ≤ 12e. To bound ‖∆̂‖2n, it follows from Theorem 2 that with probability at least
1−O(p−4),

(38) ‖∆̂‖2n = ‖f̂ − f∗‖2n ≤C2

{(
σ2
ε + ‖f∗‖2S

)√ log p

n
+ ‖f∗‖2Sm−(d+3)/d

}
for some constant C2 > 0.

Combining (37)–(38) and taking t= ‖f∗‖−1
S σε

√
n−1 log p≤ 12e yields

‖f̂ − f∗‖22 ≤C3

{(
σ2 + ‖f∗‖2S

)√ log p

n
+ ‖f∗‖2Sm−(d+3)/d

}
with probability at least 1−O(p−4+p−τ0) for some constant C3 > 0 and τ0 = σ2

ε/(384‖f∗‖2S).
The result follows from (32) that O(p−4 + p−τ0)≤O(n−C4) for some constant C4 > 0.

SUPPLEMENTARY MATERIAL

Supplement to “Nonasymptotic theory for two-layer neural networks: Beyond the
bias–variance trade-off” (; .pdf). The supplement contains the remaining proofs and tech-
nical details.
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